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Abstract

The chemical industry is moving toward automated tools to accelerate sustainable synthesis planning.
One of the main challenges to achieving this goal is the definition of helpful reaction sustainability metrics,
as they require the prediction of complex reaction conditions. Moreover, since sustainability is a subjective
and multi-faceted problem, each chemist will use different metrics for each use case. In this work, we pro-
pose a simple yet scalable toolkit as an initial step toward a complete framework for chemical sustainability
prediction and integration containing three metrics: enzyme-sustainability, solvent-sustainability, and a mod-
ified Atom Economy (AE). We combine the Pistachio and ECREACT chemical reaction datasets and achieve
an F1 score of 0.986 on enzyme-sustainability prediction and an F1 score of 0.584 on solvent-sustainability
prediction using fine-tuned BERT models. With these models, we define AI-metrics for sustainability by
employing uncertainty quantification (UQ) on the models’ predicted likelihood that the reaction is sustain-
able. By applying these metrics, we enhance a Monte Carlo tree search (MCTS) algorithm from the AiZyn-
thFinder retrosynthesis planning tool and demonstrate that users can tune a trade-off between increasing
enzyme-sustainability and lowering cost-effectiveness on generated chemical pathways.
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2 Introduction
There is a transformation toward sustainable practices in the chemical field to decrease the negative impact of
industries on the environment and evolve from non-renewable fossil fuels. For this goal, automated tools are
required to accelerate sustainable development. Related to sustainability, chemical greenness has been a topic
of discussion in the literature until recently, where the focus has shifted towards building self-sustaining and
environmentally-friendly supply chains, which requires cost-effective planning of chemical reaction routes.
However, sustainability is difficult to quantify due to its multi-faceted nature and subjective definitions, which
usually results in a lack of consensus on what constitutes a sustainable reaction or compound. In particular,
sustainability valuation tools should consider the ecological and socio-economic context the reactions and
participating compounds influence (Weber et al. (2021); Weber (2022); Sheldon (2018)).

The main contribution of this project is a toolkit with AI-based sustainability metrics, which aims to be a
first step toward a unifying framework for sustainability analysis of chemical reaction processes.

This framework exploits the recent surge of data-driven chemistry and performance improvements in natu-
ral language processing (NLP) to predict chemical agents and catalysts relevant to our sustainability discussion.
Specifically, it includes the following metrics to quantify sustainability in a chemical reaction: potential for
biocatalysis, the potential for using renewable and low-hazard solvents, and Atom Economy (AE). We propose
to use the confidence of two deep learning classifiers, based on uncertainty quantification (UQ), to score the
first two metrics. These models are trained on a dataset of 3.7M reactions which combines synthetic reactions
from Pistachio (Nextmove Software (2021b)) and enzymatic reactions from ECREACT (Probst et al. (2022a)),
from which we extract solvent information to train our solvent predictors. We interpret the predictions in the
enzyme classifier and discover an adversarial attack using a wildcard token. We then make the model robust
to this attack by randomly substituting some tokens with the wildcard token during training.

With these single-reaction scoring metrics, we can generalize to pathway scoring and integrate our AI-
metrics into existing Computer-Aided Synthesis Planning (CASP) software. We will present sustainability
improvements in this use-case using the AiZynthFinder (Genheden et al. (2020b)) retrosynthesis planning tool
where the chemist can specify the weighting of each sustainability aspect.
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3 Background
Data-driven chemistry using artificial intelligence (AI) has risen in the field of computer-aided drug de-
sign (CADD) due to its improved predictive capability compared to more traditional approaches, which man-
ually encode reactions as templates (Thakkar et al. (2020); Szymkuć et al. (2016); Segler et al. (2018)).

However, data for some chemical properties in reactions is limited, especially on sustainability (Weber
et al. (2021)).

In what follows, we provide a background on these and the other main topics relevant to this work.

3.1 Nomenclature
Before discussing the literature, we should specify the standard naming conventions used throughout this
project.

A chemical reaction describes a chemical transformation from one or more reactant molecules to one or
more product molecules with the assistance of reagents. These molecules, such as solvents and catalysts,
are not consumed in the reaction process. Reactants and reagents in conjunction form the precursors of the
reaction. A feasible reaction is that which may be successfully performed in practice.

Enzymes are natural catalysts, or biocatalysts.
Finally, performing one or more reactions in succession is called synthesis or forward synthesis, while

retrosynthetic analysis or retrosynthesis is the task of discovering the precursors that can synthesize a target
product. Multi-step retrosynthesis is the task of generating the tree of reactions that can synthesize a target
product from some starting molecules. A tree of reactions that synthesizes some product is also called a
synthesis plan, a reaction pathway, or a reaction route.

3.2 Chemical reaction representation and data availability
The type of reaction data representation is a fundamental choice in data-driven chemistry. There are mul-
tiple ways of representing reactions (David et al. (2020)), such us reaction SMILES (Weininger (1988);
Weininger et al. (1989)), SMIRKS (Daylight Chemical Information Systems, Inc. (2022)), RInChI (Grethe
et al. (2018)), the Condensed graph of reaction (CGR, Varnek et al. (2005)), Bond electron matrices (BE-
matrix, Gasteiger and Jochum (1978)), HORACE (Rose and Gasteiger (1994)), InfoChem CLASSIFY (In-
foChem GmbH (2002)), and traditional reaction fingerprints (Schneider et al. (2015); Probst et al. (2022c)).
Due to our data availability, in this work we use the reaction SMILES representation, which is a common
format available in the datasets mentioned below.

AI methods achieve state-of-the-art performance for multiple tasks in chemistry owing to the large amount
of reactions in available datasets (Thakkar et al. (2020)).

Some of the proprietary datasets used in the literature include CASREACT (> 150M reactions, Blake
and Dana (1990); American Chemical Society (2023)), Reaxys (57M reactions, Elsevier Limited (2023)),
Pistachio (> 13M reactions, Nextmove Software (2021b)), and SPRESIweb (4.6M reactions, InfoChem (2019)).

Two examples of publicly available datasets are USPTO (> 3.3M reactions, Lowe (2017)), and the Open
Reaction Database (ORD) (> 2.2M reactions, Kearnes et al. (2021)).

In addition, there is a limited amount of datasets to train and benchmark models on multi-step retrosynthe-
sis. Two examples include ASKCOS (Mo et al. (2021)), and PaRoutes (Genheden and Bjerrum (2022)).

Data related to sustainability is particularly lacking in the literature (Weber et al. (2021)). However, for
enzyme reactions there are some publicly available datasets like ECREACT (62’222 reactions, Probst et al.
(2022a)), and KEGG REACTION (Kanehisa Laboratories (2023)).

The datasets most easily accessible and ready to use for this work were Pistachio and ECREACT, which
we present in Section 4.1.

3.2.1 Data imbalance and classification metrics

Due to the large amount of chemical reactions, reaction class datasets may have a large data imbalance, espe-
cially when we combine enzymatic with non-enzymatic reactions (Nextmove Software (2021a); Weber et al.
(2021)).

Previous work has used the Synthetic Minority Oversampling Technique (SMOTE, Chawla et al. (2002))
to deal with data imbalance on SMILES (Hung et al. (2022), Mahmud et al. (2019)). However, when there
is extreme imbalance in our dataset and a long tail, this technique would over-sample noisy data, and under-
sampling may be preferred in this case as it has been previously shown in Drummond et al. (2003). To solve
this issue, a weighting technique has been proposed based on the effective number of samples per-class (Cui
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et al. (2019)), which has been shown to perform best in average class-wise accuracy in the context of object
detection (Phan and Yamamoto (2020)).

Data imbalance also affects the metrics we should use to evaluate our models.
In binary classification tasks, accuracy and F1 score are the most common metrics (Chicco and Jurman

(2020)). The F1 score is defined as the harmonic mean of recall and precision,

F1 =
2 · TP

2 · TP + FP + FN

Where TP are the number of true positives, FP the number of false positives and FN the number of false
negatives. Most classification metrics can be computed with TP, FP, FN, and the number of true negatives,
TN (Hossin and Sulaiman (2015)).

From its definition, the F1 score is more sensitive to false positives and false negatives than accuracy. This
is important in sustainability prediction, as we want our models to have a low amount of false positives, where
the reaction is predicted as sustainable when it is not, and a low amount of false negatives, where our model
missed that a reaction is sustainable. The F1 score is also more appropiate for imbalanced datasets since it
is independent on the number of true negatives. Thus, a model which always predicts that a reaction is non-
sustainable will achieve a high accuracy due to the small amount of sustainable reactions in the dataset whereas
the F1 score will be zero. For these reasons, when evaluating our models we will present both accuracy and
the F1 score but decide which model performs “better” according to the F1 score.

For multi-class classification, we can generalize the classification metrics by taking the micro or macro
average of the score over the classes (Grandini et al. (2020)). In micro averaging, we first sum TP, TN, FP, and
FN individually for all classes and then apply our original formula. Thus, the micro F1 score is defined as,

Micro F1 =
2 ·

∑
k∈C TPk

2 ·
∑

k∈C TPk +
∑

k∈C FPk +
∑

k∈C FNk

Where C is the set of classes.
In macro averaging, we first calculate the classification score separately for each class and then average

over the classes,

Macro F1 =
1
|C|

∑
k∈C

2 · TPk

2 · TPk + FPk + FNk

Therefore, micro averaging represents a global accuracy that does not differentiate between classes while
macro averaging represents a class-balanced quantity.

When classifying reactions, Schwaller et al. (2021b) use two other metrics: the confusion entropy (CEN,Wei
et al. (2010)), and the overall Matthews correlation coefficient (MCC, Matthews (1975); Gorodkin (2004)).
These metrics are meant for imbalanced single-label multi-class datasets. Given the confusion matrix Mi, j

where i ∈ C is the true label and j ∈ C is the predicted label, the CEN is defined as,

Pl
i, j =

Mi, j∑
k∈C

(
Ml,k + Mk,l

)
P j =

∑
k∈C

(
M j,k + Mk, j

)
2
∑

k,l∈C Mk,l

CEN = −
∑
j∈C

P j

∑
k∈C,k, j

(
P j

j,k log2(|C|−1)

(
P j

j,k

)
+ P j

k, j log2(|C|−1)

(
P j

k, j

))
And the MCC is defined as,

MCC =

∑
i, j,k∈C

(
Mi,iMk, j − M j,iMi,k

)
√[∑

i∈C

(∑
j∈C M j,i

) (∑
k,l∈C,k,i Ml,k

)]
·
[∑

i∈C

(∑
j∈C Mi, j

) (∑
k,l∈C,k,i Mk,l

)]
A lower CEN and a higher MCC are better.
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Since we will classify our reactions using the same dataset as Schwaller et al. (2021b) with additional
enzyme information and similar methods, we will present these metrics in the reaction classification results
alongside the micro and macro F1 scores (Section 4.3.1).

Finally, we will deal with the multi-label and multi-class task of classifying participating solvents in a
reaction. A recent paper proposes the Multi-Label Confusion Matrix (MLCM, Heydarian et al. (2022)), an
extension of the traditional single-label confusion matrix which is more representative than the traditional
multi-label confusion matrix used to calculate multi-label metrics, implemented for example in Scikit-Learn’s
multilabel confusion matrix. This is partially because traditional multi-label and multi-class metrics do
not take into account the case where the model predicts that a sample has no labels. Furthermore, traditional
precision, recall, and F-score metrics provide inflated results since they isolate their focus on each label indi-
vidually, ignoring the false negative and false positive relationship between labels, so MLCM provides a new
definition for these metrics which overcome these problems. Moreover, the MLCM is equivalent to the tradi-
tional confusion matrix when dealing with a single-label dataset and prediction. We will use MLCM-derived
metrics to compare models in the classification task of multi-label reaction solvent prediction (Section 4.4).

3.2.2 Embedding-based SMILES fingerprints vs traditional fingerprints

Previous work has used traditional molecule fingerprints for classification tasks (Chandrasekaran et al. (2020);
Gao et al. (2018); Walker et al. (2019)). These fingerprints encode molecules as bit-vectors where each feature
in the vector roughly indicates if a certain structure is present in the molecule. We focus on the Atom-Pairs (AP)
fingerprint (Carhart et al. (1985)), which is calculated by taking a numerical representation of the path distance
and properties of every pair of heavy atoms, and hashing it to get the index of the fingerprint vector feature to
set to 1.

For reactions, we will use the following two fingerprints: the difference atom-pair fingerprint (AP3, Schnei-
der et al. (2015)), and the recently published differential reaction fingerprint (DRFP, Probst et al. (2022c)). On
the one hand, the AP3 reaction fingerprint is the difference of the sum of AP fingerprints between products and
reactants, where the AP fingerprints are calculated for atom-pairs with a maximum path length of three. On the
other hand, the DRFP fingerprint computes all circular substructures up to radius three in the molecules’ graph
representation, takes the symmetric difference of the subtructures between the products and precursors, and
hashes the resulting substructures into numerical values which, after a modulo operation, indicate the features
in the fingerprint vector to set to 1. DRFP fingerprints are sparse bit-vectors, while AP3 are sparse integer
vectors.

However, it has been shown that the latent-space of transformer models pre-trained on masked language
modelling and then fine-tuned on a reaction classification task has more expressive power than traditional
reaction fingerprints (Schwaller et al. (2021b)). It has also been shown that attention-based architectures can
extract reaction grammar, avoiding the need for expert-crafted features (Schwaller et al. (2021a)).

Furthermore, previous work has shown that using SMILES features lead to better performance since they
allow for easy data augmentation (Manica et al. (2019); Kimber et al. (2021)).

In addition, traditional reaction fingerprints have limitations. For example, AP3 fingerprints cluster accord-
ing to the Dice similarity (Dice (1945); Schneider et al. (2015)), however this representation is very sensitive
to reaction reagents and it also does not cluster reactions perfectly, which means that some information in
the reaction useful for reaction classification may be lost in the process of compressing the SMILES into a
lower-entropy representation. On the other hand, feature learning is a well-known property in machine learn-
ing, where models learn the proper, or most effective, feature representation for the given task. This is due
to the universal approximation theorem (Cybenko (1989); Leshno et al. (1993); Pinkus (1999); Zhou (2020);
Kratsios and Papon (2022)).

For solvent prediction we will study the performance difference when using reaction fingerprints versus a
SMILES-based deep neural network (Section 4.4). Reaction fingerprint vectors can be seen as tabular data,
as each feature in the vector corresponds to a different property in the reaction. A recent study has discussed
the necessity for deep neural networks on tabular data, arguing that XGBoost (Chen and Guestrin (2016)), a
gradient boosting approach, provides better performance with less tuning (Shwartz-Ziv and Armon (2022)).
Thus, we will only study the performance of XGBoost models when using reaction fingerprints as the input.

3.3 Literature on data-driven sustainable chemistry
Weber et al. (2021) and Weber (2022) provide an extensive review and future avenues for sustainability in
data-driven chemistry. One of the main aspects of sustainability assessment is the necessity of quantifiable
metrics (Sheldon (2018)). Since sustainability is a multi-faceted problem, many metrics have been proposed
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and, in fact, the Sustainable Development Goals (SDGs) framework from the United Nations define 231 differ-
ent sustainability aspects that should be measured (Weber et al. (2021)). In practice, to have a complete picture
on sustainability we would need to account for monetary, supply chain, environmental impact, and energy effi-
ciency considerations, as well as their synergies and trade-offs. This is a complex system of relationships that
no single metric could thoroughly quantify. Thus, in this work we propose a general framework that focuses on
sustainability quantification as the potential that a reaction has some desirable sustainable property, which al-
lows the chemist to weight the different properties and subjectively decide which combination makes a reaction
sustainable for each use-case. As an example, we focus on two potentially sustainable aspects of a reaction:
biocatalysis, and the usage of low-hazard and renewable solvents. We will propose a general AI-based metric
approach in Section 4.5.1, which enables our framework to be expanded in the future with models that predict
other sustainability aspects in a reaction.

Biocatalysis, which we also refer to as enzyme-sustainability, plays an important role in enabling reaction
sustainability since enzymatic, or biocatalyzed, reactions can result in more cost-efficient reaction synthesis
plans (Weber et al. (2021); Sheldon (2018)) and because enzymes are nontoxic, produce minimal byprod-
ucts, and are renewable (Shoda et al. (2016); Kobayashi et al. (2001); Puskas et al. (2009); Cheng and Gross
(2010)). There is a large body of work on applying machine learning in enzyme engineering (Mazurenko et al.
(2019)). However, the literature is more limited on whether an enzyme can catalyze a reaction or not. There
is previous work on this task where the authors use a Gaussian process regression (GPR) model trained on
BRENDA (Mellor et al. (2016); Schomburg et al. (2002)). Another example is Probst et al. (2022a), where the
authors present the ECREACT dataset, which combines four publicly available datasets including BRENDA,
and use the Molecular Transformer (Schwaller et al. (2019)) on SMILES to achieve a top-1 accuracy of 49.6%
in forward synthesis prediction.

Sustainability on solvents is more difficult to define. Multiple solvent guides from industry and academia
have provided guidelines for what constitutes a hazardous solvent from a practical point of view, each of
them with different hazardous solvent definitions and different sets of hazard levels (ETH Zurich (2008);
Hargreaves et al. (2008); Curzons et al. (1999)). Byrne et al. (2016) provides an extensive review of these
solvent guides and combines them to provide a consensus on the hazard levels for 51 solvents. They base
their final ranking mainly on the solvents present in the CHEM21 survey (Prat et al. (2016)), which ranks
solvents according to safety, health and environment criteria. Additionally, they also classify these solvents
according to whether they can come from a renewable source. The authors conclude that “there is no need for
more general purpose solvent selection guides of the familiar format because they are no longer providing any
significant advancement in this field”.

There are multiple approaches for solvent prediction using shallow learning on fingerprints (AP3 for re-
action fingerprints), including multilayer perceptrons (MLPs), k-nearest neighbors (k-NN), and support vector
machines (SVMs) (Chandrasekaran et al. (2020); Walker et al. (2019); Gao et al. (2018)).

Additionally, there is a software for solvent sustainability prediction implemented in Java, SUSSOL (Sels
et al. (2020)). SUSSOL is a proprietary software, but there is an open source GitHub repository with reduced
functionality (De Smet (2020)). The solvent sustainability assumptions in SUSSOL follow the CHEM21 se-
lection guide, and solvent sustainability prediction is achieved using the Self-Organizing Map (SOM, Kohonen
(1982)) clustering algorithm.

3.4 Literature on Computer-Aided Synthesis Planning (CASP)
Computer-Aided Synthesis Planning (CASP) has the objective of providing tools to analyze reaction conditions
in pathways, suggest optimizations and synthesis plans, and help determine whether a reaction is feasible. In
one aspect of CASP, the chemist expert utilizes automated retrosynthesis tools to plan and discover pathways
that can synthesize target compounds from a set of starting molecules. In Section 4.7, we will integrate our met-
rics into the CASP software AiZynthFinder (Genheden et al. (2020b)) to search for sustainable synthesis plans.
This software uses template-based models for retrosynthesis, which classify which known chemical transfor-
mations may be applied to generate some target product, whereas template-free methods in CASP use models
which in principle can predict novel reactions (Sun and Sahinidis (2022)). For example, IBM’s RXN platform
implements template-free retrosynthesis by employing sequence-to-sequence Transformer models (Vaswani
et al. (2017)) and a strategy to explore the chemical reaction space as a hyper-graph (Schwaller et al. (2020)).
Another example of a template-based CASP tool is ASKCOS (Coley et al. (2019); Connor Coley and Mo
(2021)).

Tree-structured long short-term memory models (tree-LSTM, Tai et al. (2015)) are used in the literature
to predict pathway properties. In Mo et al. (2021), the authors train the model to predict whether a pathway
is patent-like or generated. Whereas in Genheden et al. (2022), the authors use the same model to predict the
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tree edit distance (TED, Bille (2005); Genheden et al. (2021)) between two pathways.
To generate pathways, one approach is to use Monte Carlo tree search (Kocsis and Szepesvári (2006);

Coulom (2007)). MCTS is a general search optimization technique for games or planning tasks where the
objective space can be modelled by a Markov decision process (MDP) (Browne et al. (2012); Sutton and Barto
(2018)). MCTS in combination with deep reinforcement learning (RL) has been shown to achieve state-of-the-
art performance in multiple game-related tasks (Świechowski et al. (2022)). MCTS is used in AiZynthFinder
for multi-step retrosynthesis and it is based on the work by Segler et al. (2018).

Another approach to generate pathways is inspired by the A* search algorithm (Hart et al. (1968)), called
Retro* (Chen et al. (2020)). It has been recently used in combination with a reaction knowledge base to
generate feasible and cost-efficient pathways (Jeong et al. (2022)).

Among these two approaches, MCTS is the best prediction method in terms of route quality and route
diversity according to the PaRoutes benchmark (Genheden and Bjerrum (2022)).

Another task related to CASP is that of finding the most cost-efficient set of pathways that synthesize a
collection of target molecules while minimizing the number of starting compounds used. Gao et al. (2020a)
tackle this problem using MCTS (Segler et al. (2018)) and a mixed-integer linear programming (MILP) solver
on 127 target molecules extracted from the WHO Essential Medicines List (EML) from 1977 (WHO Expert
Committee (1977)). We will not undertake this challenge in this work, however we consider that this task
is relevant for sustainable synthesis planning as it tries to minimize wastes and maximize cost-effectiveness,
which are two goals in sustainable chemistry (Weber et al. (2021); Weber (2022)).

3.5 Uncertainty quantification (UQ) and explainable AI
We want to minimize the risk of false positives and false negatives during sustainable synthesis planning, since
this would introduce non-sustainable reactions which may go unnoticed by the expert or we may miss feasible
and useful sustainable reactions. This is especially troublesome in our case since machine learning models are
black-boxes and the reasoning behind their outcomes is difficult to interpret, their predictions are noisy, and
they are prone to inference errors, so using their output as-is to define AI-metrics is unreliable (Abdar et al.
(2021)).

These problems are tackled in the field of uncertainty quantification (UQ), where one tries to extract an
accurate and reliable estimate for uncertainty in machine learning predictions (Abdar et al. (2021); Hüllermeier
and Waegeman (2021)). This notion of uncertainty or confidence in a model’s prediction can provide insights
into the inductive biases in the model.

There are two types of uncertainty in probabilistic modelling: aleatoric and epistemic uncertainty. Aleatoric,
or statistical, uncertainty is due to inherent noise or inconsistencies in the data and represents the minimum
uncertainty any model could achieve; while epistemic, or systematic, uncertainty is due to noise or expres-
sive limitations in the model (Hora (1996); Der Kiureghian and Ditlevsen (2009)). There exist very simple
methods to estimate both kinds of uncertainty in deep learning, namely Monte Carlo Dropout (MC Dropout,
Gal and Ghahramani (2016)) and test-time data augmentation (Ayhan and Berens (2018)). MC Dropout esit-
mates epistemic uncertainty and only requires the presence of Dropout layers in the network, while test-time
data augmentation estimates aleatoric uncertainty and only requires that the input data is able to be randomly
augmented, which is true for reaction SMILES. We will present and explain both methods in Section 4.5.1
and 4.5.2. In contrast, there are more complex UQ techniques for epistemic uncertainty in deep learning un-
der the umbrella of Bayesian deep learning (BDL, Wang and Yeung (2020)), where the parameters of the
network are represented as random variables. These models can be trained through Bayesian optimization in
frameworks such us BoTorch (Balandat et al. (2020)). Another specific example are deep ensembles (Laksh-
minarayanan et al. (2017)), a simple approach where combining the output of multiple deep neural networks
that have similar accuracy can boost the overall performance and reduce epistemic uncertainty.

UQ will be the basis for our AI-metrics, which we define in Section 4.5.1.
However, UQ alone cannot help us infer the causal connection between the inputs and outputs of a model.

To achieve that, the field of explainability in AI investigates methods to interpret the internal functioning of AI
models (Gilpin et al. (2018); Linardatos et al. (2020)).

There are multiple methods for the interpretability of the input’s influence on the output. One approach in
attention-based networks (Vaswani et al. (2017)) is to look at attention scores, which has been used before to
explain causal inference in the prediction of BERT (Devlin et al. (2018)) on reaction classification (Schwaller
et al. (2021b)). However, it is argued that saliency methods are better suited for the explainability of the
tokens influence on the classification prediction (Bastings and Filippova (2020)). One saliency method is that
of Integrated Gradients (Sundararajan et al. (2017)), implemented in the Captum Python package (Kokhlikyan
et al. (2020)). This method will be used in Section 4.3.1 to discover an adversarial attack on our enzyme
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reaction classifier and in Section 4.6 to demonstrate that attention can be misleading on BERT models when
trying to rationally connect their predictions to the inputs.
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4 Models and Methods
This work introduces a framework that allows chemists and researchers to introduce AI-based reaction sus-
tainability scoring on drug discovery workflows.

In this section, we will review the sustainability objectives of this framework. In particular, we look at the
approaches taken to predict enzymatic reactions and solvent sustainability, as well as describe a novel AI-based
method for scoring samples using uncertainty quantification (UQ) and, finally, a use case where we integrate
the package into AiZynthFinder (Genheden et al. (2020b)) to predict sustainable reaction pathways.

4.1 Pistachio+ECREACT Dataset
The two sustainability aspects we look at in this work are biocatalysis prediction and solvent renewability
prediction. Our first main challenge is to find a dataset that contains this reaction information as there is
limited data on sustainability (Weber et al. (2021)). We focus our study on datasets that allow natural language
processing (NLP) models to be used. This can be achieved thanks to the simplified molecular-input line-entry
system (SMILES, Weininger (1988); Weininger et al. (1989)) specification for molecules and reactions, which
is a text representation that includes atom and structural information. SMILES can completely describe a
reaction, but they do not encode the 3D structure of the molecules, and they are not unique in general; thus, a
reaction can have multiple SMILES representations.

For our sustainability purposes, we used the following datasets:

1. Pistachio (Nextmove Software (2021b)): A commercial dataset of synthetic reactions automatically ex-
tracted from patent data. It contains 3.7M reaction samples with SMILES and reaction class information.
Pistachio relies on LeadMine to text-mine patent data (Lowe and Sayle (2015)). The reaction classes in
Pistachio are classified using NameRxn (Nextmove Software (2021a)), a software that classifies roughly
1’000 different named reactions based on known reaction mechanisms and transformation rules. It de-
fines 12 main reaction types called superclasses and a class for unrecognized reactions by the software,
0.0. The original reaction types were first described in Carey et al. (2006). Pistachio is continuously
updated, but for this work, we utilized version 210403 from 2021 since we were provided with the newer
version 220406 from 2022 late in the project. The newer version 220406 will be used in Section 4.4 to
study Pistachio’s solvent distribution.

2. ECREACT (Probst et al. (2022b)): An open source dataset of enzyme-catalyzed reactions. It contains
62’222 reaction samples in SMILES format and reaction class information according to the enzymes par-
ticipating in the reaction. Reactions are classified according to the Enzyme Commission (EC) numbers,
which was implemented in 1955 by the International Commission of Enzymes—now the International
Union of Biochemistry and Molecular Biology, IUBMB (Webb et al. (1992)). EC numbers classify
the enzyme groups according to their effect on the reaction. Enzyme-catalyzed reactions and the ac-
companying EC numbers were retrieved from four databases, namely Rhea, BRENDA, PathBank, and
MetaNetX (Alcántara et al. (2012); Schomburg et al. (2002); Wishart et al. (2020); Ganter et al. (2013)),
and merged into a new data set, named ECREACT. This dataset contains 6’289 different EC classes. Fur-
thermore, the contained SMILES sometimes have a special wildcard “*” token, which indicates that the
same reaction transformation works with multiple different structures bonded at that location. These
wildcard tokens are only present in SMILES from the Rhea and MetaNetX datasets, which correspond
to 42% of ECREACT.

Figure 1 contains detailed examples for each dataset. We standardized the SMILES in Pistachio using
RXN chemutils (IBM RXN team (2022)), which removes atom mapping information.

We combined both datasets into a single one, Pistachio+ECREACT. Since ECREACT contains the reaction
class label inside the reaction SMILES, it was processed to remove this information and follow the format of
Pistachio.

We should note that reactions in these datasets are hierarchically classified. For example, a reaction of the
level three class 1.2.1 is also part of the level two class 1.2.x and, finally, the superclass 1.x.x (see Figure 1).
ECREACT has four levels. Thus, a reaction of class 2.8.1.1 is also in class 2.8.1.x, 2.8.x.x, and 2.x.x.x. We
will include the prefix “EC.” on all ECREACT classes to differentiate them from the Pistachio classes; thus,
“2.8.1.1” becomes “EC.2.8.1.1”.

46% of Pistachio classes have less than 100 samples at all three levels (like 1.2.1, 1.2.4), while 54% of
ECREACT classes have less than 100 samples at level 2 (like EC.1.1.x.x, EC.1.14.x.x). Therefore, we limit
our study to class level two for Pistachio (like 1.2.x, 1.3.x) and level one for ECREACT (like EC.1.x.x.x,
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a.

b.

Chemical reaction Reaction type SMILES representation

*C(*)C(=O)[O-].O |3.8.2.1 *[C@@H](O)C(=O)[O-]>>

(S)-2-haloacid dehalogenase

In C-halide compounds

Acting on halide bonds

EC.3.8 .2.1
ECREACT

Hydrolases
precursors product

(removed)

Dataset: Rhea

Cc1cccc(C)c1NCC(=O)O Cc1cccc(C)c1NCC(=O)Cl>>

Carboxylic acid to acid chloride

Acid to acid chloride

9.3 .1
Functional group interconversion (FGI) precursor product

Figure 1: a, Pistachio reaction example. b, ECREACT reaction example. ECREACT SMILES contains the EC number in
the string, so we removed this information when combining Pistachio+ECREACT. Unlike Pistachio, ECREACT reactions
may contain a wildcard “*” token

EC.2.x.x.x) to be fine-grained enough to learn subtle differences while having enough samples to do so. The
final number of classes is 83.

When checking the class distribution (up to class level 2 in Pistachio and class level 1 in ECREACT), we
appreciate a significant imbalance and long tail (see Figure 2).

0.0

1.3
.x1.

7.
x

1.
6.

x1.2.x2.1.x
6.1.x

6.2.x

3.1.x

9.7
.x

0.0

1

2

6

3

9
7 4 10 8

EC

11
5

0.0 - Unrecognized
1.x.x - Heteroatom alkylation and arylation
2.x.x - Acylation and related processes
6.x.x - Deprotections
3.x.x - C-C bond formation
9.x.x - Functional group interconversion (FGI)
7.x.x - Reductions
4.x.x - Heterocycle formation
10.x.x - Functional group addition (FGA)
8.x.x - Oxidations
EC.x.x.x.x - Enzyme-catalyzed
11.x.x - Resolution
5.x.x - Protections
12.x - Miscellaneous

Train (90%)

Validation (5%) Test (5%)

Figure 2: Distribution for the 83 reaction classes in the Pistachio+ECREACT dataset. The “EC” slice corresponds to
ECREACT, with EC.2.x.x.x as the most frequent class (33’315 reactions). The description for Pistachio’s superclasses and
the data split are also indicated

Additionally, two classes contain only one sample: Pistachio 12.1 and 12.2. These outliers were moved to
the test set so the training and validation sets contained in total 81 reaction classes each. Table 1 shows these
two particular samples.

The Pistachio+ECREACT dataset sample distribution was then randomly split as follows: 90% for train-
ing, 5% for validation, and 5% for testing.
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Reaction and SMILES class

C1CCOC1.CC(C)COC(=O)Cl.CCOCC.CCOCCOCCO.CN1CCOCC1.C[C@H](NC(=O)OC(C)(C)C)C(=O)O.Cc1ccc(S(=O)(=O)
N(C)N=O)cc1.O.O[K]>>C=[N+]=[N-] C[C@H](NC(=O)OC(C)(C)C)C(=O)O

12.1

C1CCOC1.C1COCCO1.CC(=O)SCC(=O)NC(CC(=O)CCl)C(=O)OC(C)(C)C.CC(=O)SCC(=O)NC(CC(=O)OC(C)(C)C)C(=O)
O.CC(C)COC(=O)Cl.CCOC(C)=O.CCOCC.CN(N=O)C(=N)N[N+](=O)[O-].CN1CCOCC1.O[K]>>C=[N+]=[N-]

12.2

Table 1: The only two reactions part of the miscellaneous (12.x) NameRXN superclass

4.2 Multi-Head Attention and BERT
The Bidirectional Encoder Representations from Transformers model (BERT, Devlin et al. (2018)) has been
used in the literature to classify reaction SMILES (Schwaller et al. (2021b)). BERT is an encoder model
based on the Transformer architecture (Vaswani et al. (2017)), which initially introduced the concept of Scaled
Dot-Product Attention. This kind of attention, given N input tokens, is defined as:

Attention(Q,K,V) = softmax
(

1
√

dk
QKT

)
V

Where Q ∈ RN,dk are the queries, K ∈ RN,dk are the keys, V ∈ RN,dv are the values, and softmax() is applied
independently in each row.

Each row in Q, K, and V corresponds to some token’s query, key, and value representations. Furthermore,
this function intuitively retrieves similarity between queries Q and keys K via a dot-product and then uses
these similarities to do a weighted average of the token values in V .

This definition of attention is permutation-invariant in the tokens. Thus, positional encodings are added to
the input tokens in the Transformer to take ordering into account. Moreover, the tokens are one-hot encoded
using a tokenizer. In our case, we will use the SMILES tokenizer from Schwaller et al. (2021b).

Another contribution was the Multi-Head Attention layer, which is defined for h heads as:

MultiHead(Q′,K′,V ′) = (head1| · · · |headh)WO

headi = Attention(Q′WQ
i ,K

′WK
i ,V

′WV
i ) i = 1, . . . , h

Where headi ∈ R
N×dv are the output token values for the ith head, “|” concatenates the vectors, and

WQ
i ,W

K
i ∈ R

dmodel×dk , WV
i ∈ R

dmodel×dv and WO
i ∈ R

hdv×dmodel are the model’s paremeters. This time, Q′, K′,
V ′ ∈ RN×dmodel are the query, key, and value representations of all tokens on the multi-head level, while Q′WQ

i ,
K′WK

i , V ′WV
i are the representations at the single-head level.

See Rush (2018) for practical implementation and further details of the Transformer architecture.
One of BERT novelties in the original paper was that it is a bidirectional language model instead of a left-

to-right architecture like the recent auto-regressive models ChatGPT (OpenAI (2022)), BLOOM (Scao et al.
(2022)), or Galactica (Taylor et al. (2022)). This bidirectionality means that it attends the relationship each
token has with its context both to its left and right.

Like other transformer models, BERT is based on self-attention, and it introduced an unsupervised pre-
training task on Masked Language Modelling (MLM), where a token is masked at random from the input text,
and the model has to predict it. In detail, BERT predicts logits for all tokens and is trained using the cross-
entropy loss function, meaning that MLM is a classification task. Through this task, the model effectively
learns the grammar in the dataset (Schwaller et al. (2021a)) and encodes the tokens into useful embeddings.
Thus, the pre-trained BERT encoder can be fine-tuned on various tasks and achieve high performance (Devlin
et al. (2018)). The tasks we are interested in are single-label reaction type classification and multi-label reaction
solvent classification. We will discuss the former in Section 4.3 and the latter in Section 4.4.

4.3 Enzymatic reaction classifier
In this section we train a BERT classifier on Pistachio+ECREACT to discern if a reaction is enzymatic or not.
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We discover an adversarial attack on our model and adapt our training procedure to account for it. We also
introduce a loss-balancing parameter to achieve higher performance on low-sample classes.

4.3.1 BERT classifier

We pre-train a BERT model (Devlin et al. (2018)) as a Masked Language Model (MLM) on the combined
Pistachio+ECREACT dataset using the Transformers framework from Hugging Face (Wolf et al. (2019)).
Following the architecture of Schwaller et al. (2021b), we set the hidden size to 256, intermediate size to 512,
number of BERT layers to 12, and 4 attention heads. However, unlike this previous work, we increment the
maximum sequence length from 512 to 1024 since some ECREACT SMILES contain many tokens. Only
one SMILES contains more than 1024 tokens with 1177 tokens and it was present in the training set, but we
consider it as unharmful as it is a single outlier reaction and increasing the sequence length requires more
memory.

Then, we fine-tune the MLM BERT model on the Pistachio+ECREACT reaction classification task, where
we set the learning rate to 3 · 10−4 since it provides good results.

We noticed that the performance of the model on some classes with low samples was low which may be
due to the uniform split of train/validation/test mentioned in the Section 4.1. This split might not represent
well the sample distribution over the classes.

Thus, the original Pistachio+ECREACT dataset was split again using stratified sampling, so each class is
independently split into 90% train, 5% validation, and 5% test. The same procedure is followed to train BERT,
pre-training on a MLM task and fine-tuning on Pistachio+ECREACT classification for 3 epochs.

Afterward, we noticed that the models “cheat” when classifying ECREACT reactions (see Table 2), as 12%
of the enzymatic samples contain a wildcard token, “*”, which is not present in Pistachio. This was visualized
by calculating importance attribution scores on the tokens using the method of Integrated Gradients (Sun-
dararajan et al. (2017)). This method allows us to understand how each input token affects the prediction,
either positively, negatively or without influence. It is defined for each input feature i as:

IntegratedGradsi(xxx) = (xi − x′i ) ·
∫
α∈[0, 1]

∂F(xxx′ + α · (xxx − xxx′))
∂xi

dα

Where F(xxx) is the neural network, xxx is the input, and xxx′ is some baseline, usually the zero vector.
Integrated Gradients quantifies how much the output has been affected with respect to the input baseline.

In our case, the input features are tokens and the baseline is the empty SMILES string "", which corresponds
to 1024 padding tokens, [PAD]. We use the Captum Python package (Kokhlikyan et al. (2020)) to calculate
the Integrated Gradients attribution scores.

In the reaction of class 9.7.x of Table 2 we can appreciate how the model correctly attributes importance to
the magnesium functional group substituted in the reaction when it correctly predicts the reaction class 9.7.x
with a likelihood of 100%. Indeed, reaction class 9.7.x includes reactions where a functional group is substi-
tuted for another. However, after substituting 2 tokens for “*”, the model ends up predicting a reaction class
of EC.1.x.x.x with a likelihood of 94% and attributes a negative impact on the newly substituted functional
group, meaning it does not consider anymore this rule in its prediction. Thus, we see that the substitution of
some tokens for “*” changes the interpretation of the reaction and the structures that influence the prediction.

To avoid this cheat, the classification fine-tuning on the stratified dataset was re-done, this time introducing
“*” at random into 50% of the Pistachio training samples. The procedure was as follows: we compute from
the training set the empirical probability of finding a SMILES in ECREACT with n “*” tokens (see Figure
3); then, for 50% of Pistachio samples we substitute min{n, 8} tokens according to the previously computed
probabilities. We do not substitute more than 8 tokens since the analysis shows that only 0.4% of ECREACT
reactions contain the wildcard token more than 8 times and substituting too many tokens could introduce
unwanted noise. The following tokens were not substituted: [PAD], [CLS], [SEP], (, ), ., >, >>,
=, ∼, -. The resulting model does not “cheat”, i.e. it is not influenced by the presence of “*” in its prediction
as it can be seen in Table 3. The same reaction of class 9.7.x previously mentioned now is correctly classified
with a likelihood of 99% before adding “*” and with a likelihood of 96% after adding “*”, and the functional
group related to the magnesium atom is correctly attributed as a factor in the prediction.

Another challenge in the data was its great imbalance and long tail (see Section 4.1). Weights based on the
per-class effective number of samples were added to the cross-entropy loss so as to deal with this imbalance.
They are introduced in the work of Cui et al. (2019), where the cross-entropy loss is re-written as:

CEy(ẑzz) = −
1 − β

1 − βny
log

 exp(ẑy)∑C
j=1 exp(ẑ j)


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Reaction with importance attribution SMILES True class Predicted class (prob.)

C1CCOC1>>C1CCOC1 - 0.0 (31%)

*1CCOC1>>*1CCOC1 - EC.3.x.x.x (50%)

ClCC1CC=CCC1.II.[Mg]>>Cl
[Mg]CC1CC=CCC1

9.7.x 9.7.x (100%)

*CC1CC=CCC1.II.[Mg]>>*
[Mg]CC1CC=CCC1

9.7.x EC.1.x.x.x (94%)

COC(=O)c1scc(C)c1N.O[Na]>>
Cc1csc(C(=O)O)c1N

6.2.x 6.2.x (100%)

*OC(*)c1scc(C)c1N.O[Na]>>
*c1csc(C(*)O)c1N

6.2.x EC.1.x.x.x (85%)

Table 2: Adding “*” in some Pistachio validation examples makes the model predict them as enzymatic, and it makes the
model change the structures it considers important for the prediction. The predicted class with its corresponding predicted
probability is indicated. Blue indicates higher importance attribution and red lower. White means no attribution. The model
used was BERT fine-tuned on the stratified Pistachio+ECREACT dataset. Importance attribution was retrieved through
the method of integrated gradients (Sundararajan et al. (2017))
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Figure 3: Frequency of the wildcard token in ECREACT reaction SMILES. Reactions usually have 1 or an even number
of wildcard tokens. Only 0.40% of reactions contain the token more than 8 times

Where y ∈ {1, 2, · · · ,C} is the class index, ẑzz ∈ RC are the predicted logits, ny ∈ N
+ is the number of training

samples for class y, and β ∈ [0, 1) is a hyper-parameter.
In the original article, β depends on class imbalance, which is defined as maxy(ny)/miny(ny). They show

that as β gets closer to 1 the approximation 1−β
1−βny ≃

1
ny

becomes a better approximation for larger ny. This

inverse frequency weighting would be a naı̈ve approach of balancing the classes; however, in this case 1−β
1−βny →

1 − β = const. for ny → ∞ which, unlike in the naı̈ve weighting, prevents very large classes from being
underrepresented.

Our dataset has an imbalance of ∼24’400—the division of the largest class, 0.0 in Pistachio, and the lowest,
4.4.x also in Pistachio—whereas the maximum imbalance factor in the original work is of 500. In that case,
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Reaction with importance attribution SMILES True class Predicted class (prob.)

C1CCOC1>>C1CCOC1 - EC.1.x.x.x (53%)

*1CCOC1>>*1CCOC1 - 11.6.x (40%)

ClCC1CC=CCC1.II.[Mg]>>Cl
[Mg]CC1CC=CCC1

9.7.x 9.7.x (99%)

*CC1CC=CCC1.II.[Mg]>>*
[Mg]CC1CC=CCC1

9.7.x 9.7.x (96%)

COC(=O)c1scc(C)c1N.O[Na]>>
Cc1csc(C(=O)O)c1N

6.2.x 6.2.x (100%)

*OC(*)c1scc(C)c1N.O[Na]>>
*c1csc(C(*)O)c1N

6.2.x 6.3.x (100%)

Table 3: After accounting for “*” during training the model does not “cheat”

the authors achieve best results with β = 0.999. We noticed that β ≤ 0.999 resulted in a similar constant
weighting of 1 − β ≥ 0.001 on most of the classes due their large amount of samples. Therefore, we decided
to evaluate performance for β ∈ {0.9999, 0.99999, 0.999999}, which provided a more diverse set of weights
across classes. For each β, we fine-tuned the stratified MLM model and performed grid search for different
learning rates based on the macro average recall on the validation set. The models were trained for 3 epochs
substituting wildcard tokens at random as described. We noticed that values of β closer to 1 required smaller
learning rates for convergence, although in all cases the learning rate of 10−4 gave the highest macro average
recall in validation.

β Learning-rate search space Best learning rate Best macro average recall
0.9999

{
10−5, 5 · 10−5, 10−4, 3 · 10−4

}
10−4 96.90%

0.99999
{
10−5, 5 · 10−5, 10−4, 3 · 10−4

}
10−4 97.37%

0.999999
{
10−5, 5 · 10−5, 10−4, 3 · 10−4

}
10−4 96.98%

Table 4: Hyper-parameter search for weighted loss. Models were fine-tuned for 3 epochs

Table 4 shows that β = 0.99999 provides the best results in terms of the macro average recall (97.37%), and
in Figure 4 we can see that the class-balanced model disallows low recall on any class, no matter its amount of
samples. This is important since, as discussed in Section 4.1, the enzymatic classes have much fewer samples
than the Pistachio classes.

Tables 5 and 6 contain a summary of the results. The evaluation metrics CEN and MCC are the same
ones used in Schwaller et al. (2021b). Table 6 also includes the classification accuracy and F1 score when
identifying that a reaction can be enzymatic.

Both in pre-training and fine-tuning for all approaches we used an AdamW optimizer (Loshchilov and
Hutter (2017)) on 2 NVIDIA A100 GPUs. In MLM pre-training we used a batch size of 48 per device and
learning-rate of 3 · 10−4 with linear decay for 10 epochs, while in fine-tuning we used a batch size of 32 and
learning-rate of 3 · 10−4 with linear decay for 3 epochs, except for the class-balanced approach in which we
used a learning-rate of 10−4.

We note that the wildcard token substitution slightly reduced overall accuracy by 0.06% and micro F1
score by 0.001 on all classes.
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Figure 4: Validation recall for all 81 classes present in validation. Classes are colored according to their superclass. Left:
unweighted loss. Right: weighted loss. The macro average recall for the non-balanced model is 94.81% and for the
balanced model is 97.37%

MLM approach Final Validation Accuracy
Non-stratified 99.04%
Stratified 99.06%

Table 5: Summary of MLM approaches. Models were pre-trained for 10 epochs. Pre-training for each model took ∼ 44h
on 2 NVIDIA A100 GPUs

Enzymatic prediction EC.7.x.x.x Pistachio+ECREACT all classes
Approach Acc. F1 F1 Acc. Micro F1 Macro F1 MCC CEN
Non-stratified 99.96% 0.987 0.111 98.04% 0.980 0.938 0.979 0.024
Stratified 99.96% 0.989 0.000 98.26% 0.983 0.943 0.981 0.022

Stratified 99.96% 0.987 0.133 98.20% 0.982 0.943 0.980 0.022
+ ‘*’ token

Stratified 99.93% 0.978 0.338 93.95% 0.940 0.901 0.935 0.058
+ ‘*’ token
+ β = 0.99999

Table 6: Summary of classification approaches. Models were fine-tuned for 3 epochs. Note that the non-stratified apporach
has a different set of training samples compared to the stratified dataset used in the other approaches

Regarding the loss-balanced model, it improved the F1 score by 0.205 on the translocase-based catalysis
prediction (EC.7.x.x.x class) which is the lowest sample class in ECREACT. Thus, by reducing the accuracy
by 0.03 percentage points and the F1 score by 0.009 on whether the reaction can be enzymatic, we gain the
ability to better identify rare biocatalyzed reactions.

4.3.2 Conclusion

Our greatest challenge in this section was training BERT on our imbalanced Pistachio+ECREACT dataset,
due to the required hyper-parameter search for the optimal loss-balancing parameter and learning-rate.

We also demonstrated how the method of Integrated Gradients (Sundararajan et al. (2017)) can be used
for model-driven discovery of adversarial attacks. A more thorough study of this adversarial attack could be
performed by randomly replacing tokens with “*” on some reactions and evaluating the distribution of the
resulting likelihood that the reactions are enzymatic.

Previous work has looked at reactions in Pistachio, achieving an accuracy of 98.2%, MCC of 0.988, and
CEN of 0.010 (Schwaller et al. (2021b)); however, it did not include enzymatic reactions. When accounting
for biocatalysts, our adversarially-aligned BERT model without loss-balancing achieves a similar accuracy of
98.2%, MCC of 0.980, and CEN of 0.022 on all Pistachio+ECREACT classes. However, the focus of our work
is sustainability prediction, and for this task our loss-balanced model achieves an accuracy of 99.93% and an
F1 score of 0.978 in validation.
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4.4 Solvent classifier for reaction sustainability
In this section, we first verify that there is enough low-hazard and renewable solvent data in our dataset. Then,
we study whether solvent sustainability and enzymatic reactions are clearly disjoint aspects in our dataset
to justify the need for a solvent predictor. Afterward, we describe the solvent extraction procedure from
Pistachio+ECREACT and provide the particular list of solvents we will consider sustainable in this work.
Finally, we train XGBoost and BERT models for sovent prediction and evaluate their performances.

4.4.1 Extracting all solvents from Pistachio

To carry out a solvent sustainability study on Pistachio (Nextmove Software (2021b)) we first must study which
solvents are available in the dataset.

We extracted solvent information from version 220406 of Pistachio. This version from 2022 contains 13M
reactions, and it is more recent than the one used in Section 4.3 (version 210403). In particular, the dataset
contains solvent information for 7M out of the 13M Pistachio reactions (53%) either by solvent name and its
SMILES representation or only by solvent name (as mined from the patents’ text).

The following challenges arise due to the imperfect nature of the patent-mining procedure used in Pistachio
and had to be overcome:

• Not all reactions contain solvent information (47% do not contain solvent information), and some reac-
tions contain multiple solvents.

• A solvent name can correspond to multiple SMILES.

• A SMILES can correspond to multiple solvent names.

• A solvent name can have no corresponding SMILES.

For the latter case, the number of reactions with solvent names without their corresponding SMILES is
26’099 (0.37% of solvent reactions). Since they are few reactions, these solvent names were removed for the
rest of the analysis.

The solvent extraction procedure is as follows:

1. For each solvent name, we select the SMILES it is most commonly paired with in the reactions.

2. We canonicalize all SMILES using RXN chemutils (IBM RXN team (2022)) and combine solvents that
have the same canonicalized SMILES. SMILES with an incorrect format are removed.

3. With the list of solvent SMILES retrieved in the previous step, a list of synonyms for each solvent is
compiled by looking at all solvent names paired with each SMILES from the list. The most frequent
synonym is kept as the “common name” for the solvent.

After curating the data, we found 80’182 different solvent names in Pistachio and 11’177 unique canoni-
calized solvent SMILES. Some solvents are composed of multiple compounds, like dichlormethane methanol,
or THF methanol.

Figure 5 displays the 100 most frequent solvents. Analogous to the reaction class distribution, there is a
high data imbalance and long tail.

We conclude that Pistachio contains enough solvent information to perform a solvent sustainability study,
which follows in the next section.
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Figure 5: 100 most frequent solvents in Pistachio 2022. Solvent names displayed are the most common names found in
Pistachio for each solvent. The same distribution is included in log-scale in blue

4.4.2 Solvent sustainability distribution in Pistachio

Solvent sustainability is a complex and multi-faceted problem, which is often defined following solvent se-
lection guides from academia and industry (Prat et al. (2016); ETH Zurich (2008)). In Byrne et al. (2016),
the authors provide a complete review of solvent selection guides and provide a final classification of solvents
according to their hazard level and source renewability by combining multiple selection guides. In particular,
we follow the solvent sustainability classification matrix of Byrne et al. (2016).

As in the previous section, we perform our analysis on the newer Pistachio version 220406 with 13M
reactions.

First, the SMILES representation for each of the 51 solvents was retrieved using the list of solvent syn-
onyms from the previous section. Then, using these SMILES we can perform a first analysis on the frequency
of each solvent in the Pistachio dataset using the results from last section (Figure 5): the 3 least common
solvents are methyl acetate, methylcyclohexane, and cyclohexanone which appeared in 550, 337, and 305
reactions respectively; while the 3 most common are THF, DCM, and water, with 1.4M, 1.3M, and 1.2M re-
actions respectively. It is important to note that the reactions counted for this paragraph do not necessarily
contain SMILES information.

To further analyze the solvents present in the Pistachio reactions and avoid possible noisy or incomplete
data in Pistachio’s solvent information, we look directly for solvents in the reaction SMILES. We extract
all reactions that contain SMILES information and standardize them using RXN chemutils (IBM RXN team
(2022)). The final amount of unique standardized reaction SMILES is 4M. With this list we can discover the
participating solvent molecules by searching for their compound SMILES. We simply use RDKit (Landrum
et al. (2022)) to extract all participating compounds in a reaction SMILES and match them to our list of solvent
SMILES. We should note that through this method solvent molecules are not necessarily acting as solvents in
the reaction, but we can still justify our sustainability analysis since the solvent sustainability information from
Byrne et al. (2016) depends on the origin and external impact of the solvent compounds, not whether they act
as solvents in the reactions.

First, we note that reactions can have multiple participating solvent molecules. In fact, 38% of the 4M
Pistachio reaction SMILES contain multiple solvents. Figure 6a shows how frequently each solvent appears
in multi-solvent reactions. Not surprisingly, water is the most common companion solvent. However, some
exceptions include triethylamine, most commonly paired with DCM, pyridine with DCM, n-hexane with ethyl
acetate, anisole with DCM, heptane with ethyl acetate, and DMPU with THF (see Figure 6b).

Then, we classify reactions according to the two previously mentioned qualities of sustainable solvents,
hazard level and source renewability:

• Hazard level: We look at the distribution of hazardous Pistachio reactions according to the solvents
present in the 4M reaction SMILES. Since each reaction can have multiple solvent molecules, we say
that the hazard level of a reaction is the hazard level of its most hazardous solvent. Figure 8a shows the
reaction hazard level distribution. As it can be seen, reactions tend to be hazardous in Pistachio.

We also look at the most common solvents present in “recommended” reactions, which is the lowest
hazard level (see Figure 8b). Both water and ethanol are the most common, each taking part in around
half of the recommended reactions.
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Figure 6: a, Frequency of solvents when participating in reactions with multiple solvent molecules in Pistachio 2022.
y-axis is in the interval 0% to 20%. The same plot is included in log-scale in blue. b, Distribution of paired solvents. Left:
Distribution of solvents (columns) in reactions where another solvent appears (rows). Solvents are sorted from most to
least common (top to bottom, left to right). Right: same plot in log-scale. Blank squares are solvents which do not pair

• Source renewability: Similar to the hazard level, we classify reactions according to the least renewable
solvent. Figure 8a shows the reaction renewability distribution. We consider that the only reactions we
can confidently label non-sustainable are those which are “not bio-based”, that is, they contain a solvent
which is definitely not renewable.

Figure 8b shows how often each “bio-based” solvent appears in bio-based reactions. As in hazard level,
water and ethanol are the most common appearing in roughly 55% of reactions.

The solvent distributions of Figures 7b and 8b are not surprising since they follow the general solvent
frequency distribution in all Pistachio reactions.

Since 68% of the 4M Pistachio reaction SMILES contain solvent molecules from Byrne et al. (2016)
and there are enough low-hazard and renewable reactions, as seen in Figures 7a and 8a, we conclude that
this solvent sustainability classification approach covers enough data to allow AI models to learn solvent
sustainability.
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Figure 7: a, Distribution of reactions in Pistachio 2022 according to their hazard level. 32% of the 4M Pistachio reactions
do not contain solvent molecules from Byrne et al. (2016). b, Distribution of recommended solvents in Pistachio 2022,
also included in log-scale in blue
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Figure 8: a, Distribution of reactions in Pistachio 2022 according to their renewability. 32% of the 4M Pistachio reactions
do not contain solvent molecules from Byrne et al. (2016). b, Distribution of bio-based solvents in Pistachio 2022

4.4.3 Intersection with reaction classes

To compare how the enzyme and solvent sustainability factors overlap, we take a look at the intersection
between the discussed solvents from Byrne et al. (2016) and our Pistachio+ECREACT dataset introduced in
Section 4.3.

For each reaction, we see if a solvent molecule is present in the reaction SMILES, either as a precursor or
product. In this way we can count for each reaction class the number of reactions the solvent appears in.

Figure 9 shows the distribution of reaction classes per solvent, i.e. the types of NameRXN superclasses (Nextmove
Software (2021a)) and including enzyme-catalyzed reactions, where the solvent participates in. We ignore all
reactions that do not have solvent information, which excludes 85% of enzyme-catalyzed reactions (see Fig-
ure 10a). Enzyme-catalyzed reactions are very rare, amounting to 0.2% of reactions, while the “miscellaneous”
class of reactions, 12.1 and 12.2, only include one reaction each (as discussed in Section 4.3).

As it can be seen in Figure 9, we lack the class information for almost 25% of reactions, which are la-
belled as 0.0. In fact, it is usually the case that given a solvent the reaction class is unknown in the dataset.
Regarding the intersection with the enzyme-catalyzed reactions, we see that solvents like water, MEK, benzyl
alcohol, cyclohexane, methyl acetate and methylcyclohexane participate relatively more in these kinds of reac-
tions compared to the rest of the solvents. However, the intersection is so small in all cases that sustainability
considerations for enzyme-catalyzed reactions and those based on sustainable solvents can be considered in-
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EC.x.x.x.x - Enzyme-catalyzed
12.x - Miscellaneous

Figure 9: NameRXN superclasses (Nextmove Software (2021a)) in which each solvent molecule participates in, including
enzyme-catalyzed reactions. Solvent molecules are sorted from most to least common (top to bottom). Reaction super-
classes for each solvent molecule are sorted from most to least common (left to right). The pie chart indicates the reaction
superclass distribution for reactions with solvent molecules. Frequent sub-classes are indicated

dependent discussions. This motivates the need for a separate model for predicting the solvents participating
in a reaction in addition to the enzyme classifier model presented in Section 4.3, as it can provide a different
perspective on reaction sustainability.

You can find the same plot without the unrecognized 0.0 class in Appendix A (Figure A.1).
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Figure 10: a, Percentage of reactions that contain solvent information per NameRXN superclass (Nextmove Software
(2021a)), including enzyme-catalyzed reactions. b, Percentage of reactions information where each solvent participates in.
The percentages are over the reactions that contain solvent information. The same distribution is included in log-scale in
blue

4.4.4 Pistachio+ECREACT solvent extraction

In order to train models to predict the solvents present in a reaction we need to first create a dataset with
reactions without solvents and their extracted solvents as labels. Thus, we will extract these solvent labels
from the Pistachio+ECREACT dataset presented in Section 4.1.

An important first consideration is that reactions in Pistachio+ECREACT contain fragment bonds ∼, which
indicate the interaction between two molecules. Thus, solvent molecules interacting through fragment bonds
have to be taken into account and extracted. Figure 11 shows an example reaction with fragment bonds and
solvent molecules.

[Cl-]~[NH4+].[Li]CCCC>>CCCC(C)=O

Chemical reaction SMILES representation

C1CCOC1.O~[Cl-]~[NH4+].[Li]CCCC>>CCCC(C)=O~CCCCCC

Fragment bonds

Fragment bond

1.

2.

Figure 11: Example reaction with fragment bonds “∼”. 1., Original reaction from Pistachio+ECREACT. The identified
solvent molecules from Byrne et al. (2016) are highlighted in red. 2., The same reaction without the identified solvent
molecules

One of the main difficulties in solvent extraction is that reactions can have multiple solvents, and each
reaction can have multiple variants with a different set of solvents each. Figure 12 shows three example
reactions which appear multiple times in the dataset, each time with a different set of solvents participating
in the reaction. Furthermore, molecules that are usually solvents sometimes act as reactants in the reaction.
For example, methoxyethanol in reaction 3. of Figure 12 participates as a reactant in the reaction, not as a
solvent. This is not a concern for our purposes, since the sustainability information we use for these molecules
is related to their origin and environmental impact (Byrne et al. (2016)), not whether they act as solvents or
reactants in the reaction.

Reactions with multiple variants correspond to 4.3% of all reactions in the dataset (117’582 reactions).
Enzyme-catalyzed reactions with multiple variants are only 0.46% (32 reactions) of all enzyme-catalyzed
reactions. Since these percentages are small, for each reaction we will combine solvent sets from all variants
into one set in the solvent extraction process, as assuming a single solvent set per reaction simplifies the model
architecture. Moreover, we can see that variant A in reaction 3. of Figure 12 contains incomplete information
as methoxyethanol, being a reactant, should be present in the reaction. So, even if our model could account for
multiple variants it may be very difficult to generalize since some variants in the trainset contain incomplete
information.

Thus, the solvent extraction procedure is as follows:

1. For each reaction variant, extract all solvent molecules that coincide with those from Byrne et al. (2016)
by matching their SMILES representation, taking into account that they may be interacting through
fragment bonds ∼.

22



Reaction C

Reaction A Reaction B

1.

Reaction A Reaction B

2.

3.

Extracted solvents:

Extracted solvents:

Combined set

Combined set

Encoded bit-vector

Encoded bit-vector

[ 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 0 0 0 0 ]

[ 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 ]

Reaction A Reaction B

Extracted solvents:

Combined set Encoded bit-vector

[ 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 ]

Figure 12: Example reactions that are multi-solvent and multi-label and the solvent extraction procedure. The reactions
presented have all solvents removed. In example 1., there are 2 variants in the dataset (A and B) which coincide in 3 solvent
molecules. In example 2., there are 3 variants (A, B and C) and variant A’s solvents are contained in variant B’s solvents,
while variant A and B do not coincide in any solvents. In example 3., there are 2 variants (A and B) and again variant A’s
solvents are contained in variant B’s solvents
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2. For each reaction, combine all solvent molecules in all reaction variants into a single set of solvent
molecules.

3. For each reaction, encode the combined solvent set S = {solvent j1 , solvent j2 , . . . }, for some jk ∈
{1, . . . , # of solvents}, into a bit-vector l ∈ {0, 1}# of solvents where li = 1 if solventi ∈ S and li = 0
otherwise.

Due to the multi-faceted nature of solvent sustainability and noise in the data we do not implicitly use sus-
tainability information in the solvent extraction process; for example, by extracting only the most sustainable
variant. It is important that models predict all possible solvents that could partake in a reaction so that the
chemist can directly validate whether the predicted solvents could indeed take place in the reaction and are
sustainable in their context.

4.4.5 Solvent sustainability definition

Sustainability is a multi-factorial problem, thus we should allow the user to heuristically choose what aspect
of sustainability to give more weight to. Therefore, all our models should be trained to predict all solvents that
could participate in the reaction and only after the solvent sustainability metric is computed according to some
rule chosen by the chemist.

For solvents, the chemist should decide which hazard level and type of renewable source are acceptable.
For this work, we base the solvents’ greenness and renewability on Table 5 from Byrne et al. (2016). In
particular, we arbitrarily decide that sustainable solvents are those either “recommended” or “inbetween rec-
ommended and problematic” and also either “bio-based”, “can be sourced renewably”, or a “potential biomass
feedstock” (see Table 7). We considered all solvent sources except those not bio-based since renewability is
one of the current core objectives in sustainable chemistry (Weber et al. (2021); Weber (2022)) and the listed
solvents in all of these source types are industrially-viable as discussed in Byrne et al. (2016). “Inbetween rec-
ommended and problematic” solvents come from a non-consensus on whether the solvent is recommended or
problematic according to safety, health and environment considerations (Prat et al. (2016)). This hazard level
has been included to cover a wide space of reactions while not having reactions being considered problematic
(∼ 45% of Pistachio reactions as seen in Figure 7).

Source
Hazard level Bio-based Can be sourced renewably Potential biomass feedstock
Recommended Ethanol 1-Butanol 1-Butyl acetate

Water Ethyl acetate Isopropanol
Isopropyl acetate

Inbetween recommended Acetic acid Acetic anhydride
and problematic Acetone t-Butanol

Ethylene glycol Methyl acetate
Methanol MIBK

Table 7: Solvents defined as “sustainable” in this work

As discussed in the previous Section, reactions are multi-label and multi-class in terms of the solvent
molecules participating in them. To classify a reaction’s sustainability according to its participating solvent
molecules we should take the worst case solvent molecules. Thus we have the following definition:

Definition 4.4.1. A reaction is solvent-sustainable if there are no non-sustainable solvent molecules partici-
pating in the reaction as reactants, agents, or products.

For example, the reaction presented in Figure 11 is not solvent-sustainable since it contains THF (with
SMILES C1CCOC1), which is not one of the sustainable solvents we have defined in Table 7.

We will refer to Table 7 in the rest of this work when scoring solvent sustainability, although our imple-
mentation is invariant to how the set of sustainable solvents is defined.

4.4.6 XGBoost baseline

We train an XGBoost model and use the atom-pair difference (AP3) fingerprints from Schneider et al. (2015)
as implemented in RDKit (Landrum et al. (2022)), and the differential reaction fingerprint (DRFP, Probst et al.
(2022c)).
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Micro and macro F1 used are those defined by the MLCM Python package (Heydarian et al. (2022)).
We also compare both approaches according to their accuracy and F1 score when classifying reaction

sustainability according to the participating solvent molecules.
Both fingerprint methods perform very similarly. However, DRFP provides slightly better performance

in solvent sustainability prediction with an F1 score of 0.615 compared to the F1 score of 0.604 from the
AP3 fingerprint, with the disadvantage of having a x20 slower conversion rate from SMILES to the reaction
fingerprint vector compared to AP3.

Solvent sustainability prediction All solvents Conversion rate
Fingerprint Accuracy F1 Micro F1 Macro F1 [SMILES/s]
AP3 2048-bit 72.37% 0.604 0.403 0.502 1’040
DRFP 2048-bit 73.60% 0.615 0.401 0.500 51

Table 8: Summary of XGBoost performance for different fingerprint approaches. Micro and macro F1 scores are calcu-
lated following the definition of MLCM (Heydarian et al. (2022)). The rate of conversion from SMILES to the reaction
fingerprint vector is also included

Figure 13 shows the MLCM confusion matrices for both approaches on the validation dataset. We can
see that the models usually predict that reactions do not contain any solvent molecules. The AP3 and DRFP
models predict that 24.83% and 23.59% of validation reactions do not contain solvent molecules, respectively.
However, all reactions in the validation set contain solvent molecules. This indicates that the greatest limitation
in these models is their low predicted likelihood for all solvents.
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(b) DRFP. No-solvent predictions: 23.59%

Figure 13: MLCM confusion matrices and percentage of “no-solvent” predictions. a, AP3 2048 bit fingerprint confusion
matrix. b, DRFP 2048 bit fingerprint confusion matrix. Recall for each solvent class is also included in parenthesis. “No
True Label” is 0.0% since reactions without solvents are excluded in this study

Analogously to the performance improvements of DRFP over AP3 in Probst et al. (2022a), DRFP outper-
forms AP3 in solvent sustainability prediction.

4.4.7 BERT hyper-parameter search

Analogously to the approach from Section 4.3.1, we pre-train BERT on a Masked-Language Modelling (MLM)
task on the stratified Pistachio+ECREACT dataset. Compared to the enzyme classification model, we increase
the hidden size and intermediate size to 512 and 1024, respectively. The MLM model is pre-trained for 3
epochs and achieves a validation accuracy of 99%.
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Due to the data imbalance, we evaluate both a non-weighted sigmoid cross-entropy (CE) loss, and the same
loss weighted by the effective number of samples (Cui et al. (2019)). This is analogous to the balancing loss
from Section 4.3.1. In our case, we have a data imbalance of ∼4480, which is 5.40 times smaller than the
Pistachio reaction class imbalance seen in that previous section.

To choose the optimal loss-balancing parameter, we do a hyper-parameter search by also including the
learning-rate and weight decay in the search. Since the search space is too big, we restrict our training set
during the search to 10% of the samples.

Unlike the fine-tuning approach of the enzyme classifier, we cannot use a linear learning-rate decay since
we are not dealing with the complete training set. Instead, we use the inverse square-root learning rate sched-
uler introduced in the original Transformer architecture (Vaswani et al. (2017)), since it has proven good results
when scaling visual transformers against other scheduling approaches (Zhai et al. (2022)) and it does not de-
pend on the number of training epochs. This independence on the number of epochs allows us to cut training
during the hyper-parameter search and still be able to meaningfully scale training to multiple epochs after we
have found the best hyper-parameters. The learning rate update rule is:


γt = γ0 ·

t
warmup if t < warmup

γt = γ0 ·

(√
t + (timescale−warmup)

timescale

)−1

if t ≥ warmup

Where γ0 is the original learning rate, γt is the scaled learning rate at step t, timescale is a scaling parameter,
and warmup is the number of warmup steps. Following the implementation of Zhai et al. (2022), timescale is
set to equal warmup.

For the hyper-parameter search, we use AdamW as the optimizer (Loshchilov and Hutter (2017)), a batch
size of 32 per device, and two NVIDIA A100 GPUs. We utilize Optuna (Dusenberry et al. (2020)) through
the Transformers Python package (Wolf et al. (2019)) for our hyper-parameter search. Due to time constraints,
we employ Hugging Face’s Optimum (Hugging Face (2022)) with ONNX Runtime (Microsoft (2022)) to
accelerate training by ∼2.7, and limit the number of trials to 20. Finally, the number of warmup steps chosen
is 1’800, which is ∼ 5% of an epoch, and we only consider β values above 0.99 since lower values result in
equal weighting across solvent classes.

Table 9 shows the search results. We divide (1 − β) to the validation loss in the loss balancing approaches
when presenting the results to compare them on an equal footing, as this is a constant factor that simply
re-scales the loss.

Loss balancing Best trial Best validation loss Best learning-rate Best weight decay
None 12 0.08120.08120.0812 2.1 · 10−4 0.463
β = 0.99 11 (1 − β) · 0.08120.08120.0812 2.3 · 10−4 0.401
β = 0.999 10 (1 − β) · 0.0982 3.4 · 10−4 0.385
β = 0.9999 18 (1 − β) · 0.2996 5.7 · 10−4 0.091
β = 0.99999 18 (1 − β) · 2.4405 5.7 · 10−4 0.091

Table 9: Hyper-parameter search results. A Tree-structured Parzen Estimator (TPE) sampler was used with the same initial
seed in all cases. Each trial took ∼36min on 2 NVIDIA A100 GPUs, including training and evaluation

After retrieving the best hyper-parameters, we train each model for 3 epochs using the best learning-rate
and weight decay. The results are summarized in Figure 14. As it can be seen, the model trained with loss
balancing β = 0.99 achieves the best results in solvent sustainability prediction with an F1 score of 0.648 and
accuracy 68.64%. All models except β = 0.99999 outperform in the F1 score our XGBoost baseline trained
on DRFP fingerprints which achieved an F1 score of 0.615 (see Table 8).

Since the model with loss balancing β = 0.99 achieves the best performance in sustainability prediction,
we continue fine-tuning it for 3 more epochs. The F1 score in sustainability prediction increases 0.012 points
from 0.648 to 0.660. As this increase is small, we do not continue fine-tuning for further epochs. Figure 15
shows the MLCM confusion matrix for this BERT model. Analogously to the XGBoost baseline, the BERT
model often predicts that reactions do not have any solvents, classifying 22.62% of the validaton set as having
no solvents. This is similar to the XGBoost DRFP model, which classifies 23.59% of reactions as having no
solvents.

In conclusion, we will use the fine-tuned BERT model with loss balancing parameter β = 0.99 and trained
for 6 epochs as our solvent sustainability predictor. However, we should note that performance results from
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Figure 14: Summary of BERT loss balancing approaches for solvent prediction. For each approach, the best hyper-
parameters from Table 9 were used. Models were trained for 3 epochs except for one model with β = 0.99, which was
trained for 6 epochs. Micro and macro F1 scores are calculated following the definition of MLCM (Heydarian et al.
(2022)). All models were fine-tuned on 2 NVIDIA A100 GPUs
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Figure 15: MLCM confusion matrix for BERT model with β = 0.99 and fine-tuned for 6 epochs. Recall for each solvent
is indicated in parenthesis. Amount of no-solvent predictions: 22.62%

Figure 14 may not be final since models could be improved with better hyper-parameters. This is because our
hyper-parameter search was limited due to the small fraction of the training set it used and the low amount of
trials required to finish the search in a reasonable time. The timescale parameter in the learning-rate scheduler
may also play an important role in the speed of convergence since it dictates how quickly the learning-rate
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decays, so including it in the hyper-parameter search may lead to better performance.

4.4.8 Conclusion

Our XGBoost baseline using AP3 fingerprints achieves a micro F1 score of 0.403 and macro F1 of 0.502,
while the most performing fine-tuned BERT model with a loss-balancing parameter of β = 0.9999 achieves a
micro F1 of 0.216 and macro F1 of 0.252. Despite this great score difference in multi-label classification, our
loss-balanced BERT model with balancing parameter β = 0.99 achieves a better F1 score of 0.648 in solvent
sustainability prediction compared to XGBoost, which achieves an F1 of 0.615. This discrepancy may be
because BERT models achieve high accuracy only when predicting common non-sustainable solvents, which
define whether or not the reaction is solvent-sustainable (see Definition 4.4.1).

Solvent sustainability prediction All solvents
Model Accuracy F1 Micro F1 Macro F1
XGBoost (AP3) 72.37% 0.604 0.403 0.502
XGBoost (DRFP) 73.60% 0.615 0.401 0.500
BERT (β = 0.99, 6 epochs) 69.47% 0.660 0.222 0.248

Table 10: Summary of solvent prediction models

Due to its better performance in F1 solvent sustainability prediction, we use the fine-tuned BERT with
β = 0.99 in the rest of this work for solvent sustainability scoring of reactions.

4.5 Sustainability metrics
In this section we introduce our definition for an AI-metric, which requires a test-time SMILES augmentation
algorithm which will be explained, and validate them. Then, using the techniques introduced in the AI-metric
definition, we analyze the capability of our BERT model to correctly classify outlier reactions which have
multiple class labels. In particular, we will look at reactions which are both sustainable and non-sustainable.
Finally, we introduce a deterministic metric, the Atom Economy (AE).

4.5.1 AI-based metrics

If our AI models were perfect, we could classify reactions as enzymatic or solvent-sustainable without any
uncertainty. Unfortunately, AI models rely on statistical approximation where data is noisy and limited, opti-
mization gets stuck in local minima, and the function space from a model’s architecture may not contain the
solution that best generalizes for the task. Thus, any metrics based on AI models should quantify how likely
the input is of some class.

In particular, we want our AI-metrics to have the following properties:

• Normalization: All metrics are in the range [0, 1], where 0 means the reaction is not sustainable and 1
means the reaction is sustainable.

• Reliability: Metrics should quantify how much we can rely on a model’s prediction. If the model is
perfectly confident that a reaction is sustainable and there is no noise in the input data, the metric should
be 1. On the other hand, if the model classifies a reaction as sustainable but it is not confident about its
prediction or there is a very large amount of noise in the input, the metric should be close to 0.

We will approximate the reliability property, as there is no perfect approach. In fact, the field of uncertainty
quantification (UQ) tries to address this problem and there are multiple competing techniques (Abdar et al.
(2021); Hüllermeier and Waegeman (2021)).

Thus, we base our AI metrics on the probability and confidence in the classification predictions. In partic-
ular, given our model with parameters θθθ, we base our metrics on the likelihood that the input sample xxx can be
classified as some class y,

likelihoody = p
(
y | xxx, θθθ

)
We then define the AI-metrics as the maximum expected likelihood, conditioned on our training set D,

scaled by the confidence in the prediction over the set of classes C,
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AI-metric = max
y∈C
Ep(θθθ|D)

[
likelihoody

]
· confidencey ∈ [0, 1] (1)

In our case, C is the set of sustainable classes which, for enzyme sustainability scoring, would be all
reaction classes EC.x.x.x.x and, for solvent sustainability scoring, would be all solvents the user defines as
sustainable.

The confidence quantifies uncertainty in the prediction and it is defined following the work of Markert
et al. (2020). Thus, given the minimum and maximum possible standard deviations in the likelihood σmin and
σmax, the confidence is,

confidencey = 1 −
stddevp(θθθ|D)

(
likelihoody

)
− σmin

σmax − σmin
∈ [0, 1]

Where stddev() denotes the standard deviation. Since the likelihood is a probability, it is a random variable
in the range [0, 1], so σmin = 0 and σmax =

1
2 .

The expected likelihood and standard deviation are estimated through uncertainty quantification. Following
Markert et al. (2020), we use Monte-Carlo Dropout (MC Dropout) for epistemic uncertainty estimation, and
test-time data augmentation for aleatoric uncertainty estimation.

MC Dropout (Gal and Ghahramani (2016)) is a simple yet effective technique where the dropout layers
in a deep neural network, commonly used as regularization during training, are also active during inference.
Thus, since a different random subset of the network’s nodes is active for each forward inference, it is as if
each forward pass uses a different model with different parameters.

In test-time data augmentation (Ayhan and Berens (2018)) we augment the input samples by applying
transformations which do not alter the true classification of the sample. In our case, we augment reaction
SMILES, which can easily be achieved with RDKit (Landrum et al. (2022)) and random permutations. We
detail the SMILES augmentation algorithm in the next section.

Combining both techniques, for each SMILES augmentation we can sample with MC Dropout multiple
likelihoods. With these samples, we can approximate the expected likelihood as the samples’ mean and the
standard deviation of the likelihood as the samples’ standard deviation. In specific, we augment the SMILES
10 times and do 10 forward MC Dropout inferences for each augmentation.

With Equation 1 we have defined a normalized and reliable metric based on AI models. However, with
our estimation of the confidence, the reliability is put into question. By estimating the expected likelihood and
the confidence with MC Dropout and test-time data augmentation, the resulting metric quantity is stochastic in
nature, thus when presenting it in the following sections we will provide confidence intervals. In what follows
we first describe how we augment the SMILES for the confidence estimation and then perform an analysis on
the empirical validity of these metrics.

4.5.2 Reaction SMILES augmentation

As stated in the previous section, to compute our AI metrics we need to augment the input reaction SMILES.
For that, we devise a SMILES augmentation algorithm which outputs duplicates with low probability.

We divide our augmentation algorithm in four conceptual steps, outlined in Figure 16.
First, we augment each compound in the reaction separately by drawing at random from RDKit’s

Chem.MolToSmiles() function, which can return duplicates. The number of augmentations for each com-
pound, M, has to be large enough so that we can later retrieve our desired k reaction SMILES by permuting
the augmentations, but small enough so that the execution time of the algorithm is reasonable. We arbitrarily
set M = ⌊20 · k1/compounds⌋, where compounds is the number of compounds in the reaction and ⌊·⌋ is the floor
function. The intuition is that in this way we get Mcompounds = 20compounds ·k total permutations, which is a con-
stant multiple of our desired k permutations. Each compound permutation corresponds to a different reaction
SMILES (see step 2. in Figure 16).

In practice, we draw A · min{A2, M} compound augmentations from Chem.MolToSmiles() removing
duplicates, where A is the number of atoms in the compound, and then keep M of those augmentations. If
there are less than M augmentations we duplicate the augmentations until there are M of them. We observed
that this approach reduced the number of duplicates, although the number of draws is arbitrary.

Then, we notice that we can uniquely index each compound permutation. The largest index is Mcompounds − 1.
With this observation, we draw k indices from 0 to Mcompounds − 1 without replacement, each corresponding

to a different reaction SMILES augmentation.
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O(C(=O)C)C(=O)C C(O)(C(C)CCC(O)=O)=O CC1CCC(=O)OC1=O>>.

. >>
O(C(=O)C)C(=O)C
C(=O)(C)OC(=O)C
C(=O)(OC(C)=O)C
C(OC(C)=O)(C)=O
C(C)(OC(C)=O)=O

O=C(C)OC(=O)C C(=O)(CCC(C)C(=O)O)O O1C(=O)C(CCC1=O)C

0
1
2
3
4

M-1

1. Augment each compound randomly (allow duplicates): 2. Each compound permutation has an associated index:

3. Draw k indices randomly without replacement:

...

...

OC(CCC(C)C(=O)O)=O
C(O)(C(C)CCC(O)=O)=O
C(C(C)CCC(=O)O)(O)=O
C(C(C)C(O)=O)CC(O)=O
C(=O)(O)CCC(C)C(O)=O

CC(=O)OC(C)=O.CC(CCC(=O)O)C(=O)O CC1CCC(=O)OC1=O>>

Reaction type: Carboxylic anhydride synthesis (2.6.19)

...

C1(=O)C(CCC(O1)=O)C
O=C1C(CCC(=O)O1)C
C1(CCC(C(O1)=O)C)=O
C1C(=O)OC(C(C1)C)=O
C1C(=O)OC(=O)C(C1)C...

O(C(=O)C)C(=O)C
C(=O)(C)OC(=O)C

O=C(C)OC(=O)C C(=O)(CCC(C)C(=O)O)O O1C(=O)C(CCC1=O)C

0
1

M-1

...

...

OC(CCC(C)C(=O)O)=O
C(O)(C(C)CCC(O)=O)=O

... ... ...

120'805

401'103

...

C1(=O)C(CCC(O1)=O)C
O=C1C(CCC(=O)O1)C...

O(C(=O)C)C(=O)C C(O)(C(C)CCC(O)=O)=O CC1CCC(=O)OC1=O>>.

O(C(=O)C)C(=O)CC(O)(C(C)CCC(O)=O)=O CC1CCC(=O)OC1=O>>.

4. Shuffle precursors and products' order randomly:

(0, 1, 0)

(12, 8, 5) reaction 1

reaction k(40, 11, 3)

0 +        1xM +        0xM²

1 + (M-1)xM + (M-1)xM²C(=O)(C)OC(=O)C C(=O)(CCC(C)C(=O)O)O O1C(=O)C(CCC1=O)C>>. (1, M-1, M-1)

SMILES Permutation Index

choice(M                     , k)number of compounds

Figure 16: Reaction SMILES augmentation process

Finally, for all drawn reaction SMILES we randomly shuffle the precursors’ order and the products’ order.
Of course, since Chem.MolToSmiles() outputs duplicates, some reaction SMILES may be duplicated, but

it is a rare instance and we have mainly observed it in short input SMILES like: c1cc[nH]c1>>c1ccc2ccccc2c1.
We will now go over one important challenge we encountered when drawing the indices (step 3. in Fig-

ure 16).
To draw our k indices without replacement we first tried NumPy’s numpy.random.choice() function.

Unfortunately, to draw without replacement numpy.random.choice() creates an array of size N = Mcompounds

which requires an infeasible amount of memory for reactions with many compounds. However, when sampling
with replacement the same function only requires O(k) memory. Thus, we devise a memory efficient algorithm
to sample without replacement:

Algorithm 4.5.1 An algorithm to efficiently draw without replacement. k > 0 items are taken without replace-
ment from a universe of size N. choice(N, k) samples k items with replacement with a space complexity of
O(k log N):

Require: N ≥ (2 +
√

2) · k
1: X ← {choice(N, 1)}
2: while |X| , k do
3: s← choice(N, 1)
4: if s < X then
5: X ← X ∪ {s}
6: end if
7: end while
8: return X

This algorithm uses O(k) memory and, for our purposes, it draws 1 + 1.003k indices with probability less
than 20−compounds, which is 0.25% for two compounds. A general proof of this last statement and a complete
analysis of the algorithm can be found in Appendix B.

Overall, this augmentation algorithm could be improved by modifying Chem.MolToSmiles() so that we
can draw compound SMILES without replacement and by analyzing what values of M allow us to retrieve a
statistically diverse set of augmented reaction SMILES.

4.5.3 Validating AI metrics

We have seen that our definition for AI-metrics is approximated through Monte-Carlo (MC) Dropout and test-
time reaction SMILES augmentation. Thus, our AI-metrics are stochastic and an approximation of the real
definition, Equation 1.

To validate these AI-metrics we look at their capability to discern sustainable versus non-sustainable re-
actions. For this purpose, we must quantify non-sustainability, which is easily achieved by inverting the set
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of classes C in Equation 1. In this way, we have the non-sustainability counterpart for each sustainable AI-
metric. We plot both values for each reaction for each of our AI-metrics: enzyme sustainability, and solvent
sustainability.

Before discussing the results, we note that AI-metrics require an AI model. For enzyme sustainability, we
choose our loss-balanced BERT model from Section 4.3.1, which achieves an F1 score of 0.978 in enzyme
prediction (see Table 6). For solvent sustainability, we choose our BERT model fine-tuned for 6 epochs with
loss-balance parameter β = 0.99, which achieves an F1 score of 0.660 in solvent sustainability prediction (see
Table 10).

Figure 17 shows how the enzymatic AI-metric successfully separates sustainable and non-sustainable
classes. In fact, any value of the AI-metric above 0.1 accurately isolates enzymatic reactions from the rest.
The unrecognized class 0.0 in this case is neither sustainable nor non-sustainable, thus it was excluded from
the set of classes C in Equation 1 for the sustainable AI-metric calculation and its non-sustainable counterpart.
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Figure 17: Enzymatic sustainability metric on validation set. Unrecognized reactions of class 0.0 are included in grey.
Dense regions are marked on the right log-log plot through kernel density estimation (KDE)

Figure 18 shows the results for the solvent sustainability AI-metric. Following Definition 4.4.1, sustainable
reactions are those which do not contain a non-sustainable solvent and, for this work, sustainable solvents are
those defined in Table 7. The plot shows how this AI-metric does not clearly separate the solvent-sustainable
reactions, which may be due to the low performance of the BERT solvent predictor. However, for AI-metric
values above 0.75 the model is able to better isolate solvent-sustainable reactions from the rest. In Appendix A
you can find the same plot when defining a reaction solvent-sustainable if it contains any sustainable sol-
vent (Figure A.2).

To conclude, our enzyme metric can accurately discern enzyme-sustainable reactions even for low metric
scores, while the solvent-sustainability metric can only distinguish solvent-sustainable reactions for very high
scores. In particular, with our current models the solvent-sustainability metric is unreliable for metric scores
up to 0.75.
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Figure 18: Solvent-sustainability metric on validation set. The fraction of reactions with a sustainable score > 0.7 and
> 0.8 are indicated. Dense regions are marked through kernel density estimation (KDE)

4.5.4 Uncertainty Quantification (UQ) for reactions in multiple classes

When combining the Pistachio and ECREACT datasets, 32 reactions SMILES are present in both datasets.
These are Pistachio synthetic reactions where we alternatively have the option to catalyze them with enzymes.
We will study whether we can infer the secondary class label in these reactions with our enzyme model, which
is trained on a single label task. To achieve this, we use Uncertainty Quantification (UQ). In particular, we
use the Monte-Carlo (MC) Dropout and test-time data augmentation techniques introduced to approximate the
AI-metrics in Section 4.5.1. These approaches allow us to estimate the likelihood distribution for all of the
reaction classes and so we can see the most likely predictions and their uncertainty.

We place 16 of the 32 multi-label reactions in the training set and the other 16 in the test set. Analogously
to the AI-metric computation, we do 10 MC Dropout forward passes for each SMILES augmentation, where
we augment the SMILES 10 times, for a total of 100 likelihood samples. Our model is BERT with loss-balance
parameter β = 0.99999 and F1 score of 0.978 on enzyme prediction (see Table 6).

Figure 19 shows the UQ of the likelihood for four example reactions in the training set and four example
reactions in the test set.

We make the following note-worthy observations:

• For 16 out of 16 training set cases the class with highest expected likelihood is enzymatic, while 12
out of 16 test set cases are most expected as enzymatic. The four cases not expected as enzymatic are
expected as unrecognized (class 0.0).

• The top-1 class is the correct enzymatic class in 16 out of 16 training set cases, and 12 out of 16 test set
cases. In only one test case the true enzymatic class does not appear in the top-5.

• The true Pistachio class appears in the top-5 in 10 out of 16 training set cases, and 10 out of 16 test set
cases.

In conclusion, when there is ambiguity about the reaction class, the model gives priority in its prediction
to enzyme-catalyzed classes while keeping a high accuracy. This means that our model may prioritize sus-
tainability, however a proper analysis with many more multi-label reactions would be required to confirm this
claim.
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Figure 19: Eight example multi-label reactions in the training set and test set and their corresponding likelihoods for the
top-5 predicted classes. True classes are indicated in red, if present

4.5.5 Atom Economy

Atom Economy (AE) is a common greenness metric used when estimating sustainability (Sheldon (2018);
Weber et al. (2021)). It is usually defined as the ratio between the products’ total molecular weight and
the reactants’ total molecular weight. It should be a metric between 0% and 100%; however, the following
problems arise due to the imperfect nature of our Pistachio+ECREACT dataset:

• Reactions have incomplete reactant and product information. Thus, a reaction may have a bigger product
molecular weight than the reactants’, resulting in an AE score above 100%.

• Reactions do not contain stoichiometry information (how many repetitions of each compound is neces-
sary for the reaction to happen). This can again result in an AE score above 100%.

To resolve these issues, we modify the definition of atom economy:

AE = 1 −
|mass in products −mass in reactants|

max{mass in products, mass in reactants}

The intuition is that AE should quantify how much atomic mass is “wasted” in the reaction process. This
definition also ensures that the AE score is between 0% and 100%. Similarly to the original definition, an
AE score of 0% implies that no product is made and 100% implies that all atoms in the reactants appear in
the products. Furthermore, if the products’ mass is less than or equal the reactants’ mass this AE score is
equivalent to the original definition. Finally, unlike the original definition, 0% can also imply the pathological
case that the product is generated from no reactants.

We use this definition of Atom Economy as an additional metric alongside the enzyme and solvent AI-
metrics.

4.5.6 Conclusion

We have outlined the three different reaction metrics: enzymatic sustainability, solvent-sustainability, and
Atom Economy (AE).

These metrics can already help integrate some form of sustainability automation into synthesis planning
workflows. However, we will see in the next section that these metric quantities can be misleading and so they
serve more as a guide for sustainability that a human expert must interpret.
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4.6 Limitations and AI interpretability tools
In this section we show some dangerous pitfalls of blindly relying on AI predictions.

Our BERT reaction classifier from Section 4.3.1 achieves a macro F1 score of 0.901 and accuracy of
93.95%, however it missclassifies the reaction presented in the top-row of Table 11 as being catalyzed by an
isomerase enzyme (class EC.5.x.x.x), when in reality it is of a non-sustainable class “carboxylic acid to acid
chloride” (class 9.3.1). Furthermore, it misclassifies it with a metric score of 0.52 ± 0.07, where we computed
the metric ten times.

This is not an isolated example of this type. We can look at similar reactions in terms of the Dice coeffi-
cient (Dice (1945)) on the AP3 reaction fingerprints. The Dice coefficient has been used in previous work to
cluster AP3 fingerprints (Schneider et al. (2015)), and it is equivalent to:

Dice(aaa, bbb) =
1
N
·

N∑
i=1

111ai=bi

Where aaa, bbb are fingerprint vectors, N is the length of the fingerprints (in our case 2048), and 111(·) is the
indicator function.

Table 11 shows three other reactions with high Dice similarity. All three reactions, like the original, have
a true class of 9.3.1 and the model predicts they are of class EC.5.x.x.x. Their sustainability metrics are
0.42 ± 0.02, 0.29 ± 0.01, and 0.48 ± 0.00.

Therefore, even if our metrics are close or above 0.50 it does not mean that the reaction is enzyme-
sustainable.

For this reason we provide easy-to-use AI interpretability tools in our package to assess the deep neural
networks’ predictions. We continue by applying these tools to study our missclassified prediction.

Reaction Dice similarity True class Predicted class (prob.) Metric score

(original) 9.3.1 EC.5.x.x.x (97%) 0.52 ± 0.07

0.996 9.3.1 EC.5.x.x.x (94%) 0.42 ± 0.02

0.992 9.3.1 EC.5.x.x.x (82%) 0.29 ± 0.01

0.992 9.3.1 EC.5.x.x.x (97%) 0.48 ± 0.00

Table 11: Misclassified reaction (top-row) and similar reactions in terms of Dice coefficient on the AP3 fingerprint. The
likelihood for the predicted class is in parenthesis. The metric score is calculated ten times for each reaction and averaged.
The error is the standard deviation

The first interpretability tool uses uncertainty quantification (UQ) to estimate likelihood uncertainty. This
tool was used in Section 4.5.4 to assess if our model could identify secondary reaction classes in reactions
with multiple class labels. For our particular example, Figure 20 shows the top-5 reaction classes with highest
likelihood. As it can be seen, all five classes are enzymatic and class 9.3.1 is nowhere to be seen, thus the
model predicts that the non-sustainable class is unlikely.

The second interpretability tool is attention visualization. We can plot attention matrices for each head in
each layer. Figure 21 shows the attention matrices for the first and last layers of our BERT model. The figure
also displays the average attention scores per atom token per head in the first layer, and the attention received
by the [CLS] token in the last layer. This kind of attention visualization on the [CLS] token has been used
before to demonstrate that BERT can learn the atoms that take part in a reaction and use this information for
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Figure 20: Top-5 reaction classes for missclassified example

its prediction (Schwaller et al. (2021b)). However, we can see in Figure 21b how, despite the fact that the
reaction is confidently missclassified, the model correctly places the [CLS] token attention on the exchanged
atom groups OH and Cl, which is precisely the rule that describes reactions in class 9.3.1.

(a) Average attention per-token in the first layer (b) Last layer’s attention for token [CLS]

Figure 21: BERT attention for the first and last layers. Reactions are shown for each head: head one (top) to head four
(bottom). Reaction atoms are colored according to their attention score

In fact, attention, although useful to visualize the inner workings of the model, is misleading and not very
meaningful to understand the input’s influence on a BERT model prediction (Bastings and Filippova (2020)).
This is because attention in the first layer can only explain the activation for the next layer, while the token
embeddings in the last layer before classification or any layer in-between do not encode the individual token,
but rather a global property in the text. Thus, token attention in Figure 21b does not explain the influence of
each input token in the final prediction. For that, we can look into our next interpretability tool, the method of
Integrated Gradients (Sundararajan et al. (2017)).

We used Integrated Gradients in Section 4.3.1 to discover an adversarial attack on our model. When ap-
plying it to all four missclassified reactions we observe that the exchanged atom groups are not the only atoms
that influence the prediction. In fact, the exchanged atom group OH now has a negative attribution, and instead
the model is influenced by other structures in the reactant. We can conclude that reactions with structures such
us those with positive attribution in Figure 22 will be confidently missclassified as class EC.5.x.x.x.

In this section we presented different techniques to debug our AI models and applied them to a missclassi-
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Figure 22: Importance attribution on missclassified reactions

fied example. Due to this problem on AI reliability, we remark that sustainability assessment using AI models
cannot be completely automated, even though these models could help accelerate sustainable development,
and there should be a human to verify the results.

4.7 Computer-Aided Synthesis Planning (CASP) Use Case
In this section we bring our metrics into practice and discuss how they can be integrated for reaction pathway
generation.

Chemical reaction pathways or routes are paths of compounds and reactions which describe the reactions
that have to take place to synthesize a target compound from starting compounds. Starting compounds are also
called the leaves of the routes. We say that a compound is in stock if it is part of our valid starting compound
dataset.

The generation of pathways, also called retrosynthesis analysis, is a particular area in Computer-Aided
Synthesis Planning (CASP) in which we predict the reaction route backward from the target compound to the
starting compounds.

One approach to generate pathways uses Monte-Carlo tree search (MCTS), which we explain in the fol-
lowing section. Then, we describe the scoring function we introduce into this algorithm by combining an
approximation of the routes’ cost and our metrics. Finally, we use the MCTS algorithm implemented in AiZyn-
thFinder (Genheden et al. (2020b)) to analyze the impact of our scorer on 127 target compounds extracted from
the WHO Model List of Essential Medicines (EML) from 1977 (WHO Expert Committee (1977)).

Figure 23: Example pathway or route. This pathway is part of the PaRoutes dataset (Genheden and Bjerrum (2022)) and
was extracted from the US20100004245A1 patent. Solid circles represent reactions. Starting compounds are indicated in
green

36



4.7.1 Monte-Carlo tree search for CASP

The approach we will focus on for computer-aided retrosynthesis is the Monte Carlo tree search (MCTS)
algorithm implemented in AiZynthFinder (Genheden et al. (2020b)).

In Segler et al. (2018), which was later implemented in AiZynthFinder, the authors combine MCTS with
deep reinforcement learning (RL) and symbolic rules to achieve state-of-the-art performance. Their MCTS
algorithm finds new pathways in each iteration until the limit number of iterations or a time limit are reached.
Each iteration has the following steps:

1. Selection: Starting from the target compound for which to generate the pathway, called the root node,
the currently generated node tree is traversed following a greedy policy. A node or node state s is a
collection of starting compounds in a reaction route. The node tree is the currently generated tree of
nodes in the MCTS iteration.

The node selection policy is repeated until a leaf node is reached by traversing different state-action
pairs in the node tree (st, at), where actions at are reactions which have as product some compound in
st. This policy greedily chooses the reaction at which maximizes for all a the linear combination of a
value function Q(st, a) and a prior probability P(st, a). This prior probability can be calculated with a
deep neural network.

2. Expansion: A neural network, called the expansion policy, predicts the single-step retrosynthesis for
each molecule in the selected node. By repeating the retrosynthesis multiple possible sets of reactants
are generated for each molecule, which are then filtered using a second neural network, the in-scope
filter.

These reactants correspond to new nodes in the MCTS tree. The most promising node is selected for the
next step.

3. Rollout: Multi-step retrosynthesis is performed using a third neural network, the rollout policy, from
the chosen node until the maximum depth is reached or all molecules are solved. In AiZynthFinder, the
rollout policy is the same as the expansion policy by default.

4. Update: The value for each MCTS node state and selected action pair is updated. In particular, the
authors modify the Q-learning algorithm (Watkins (1989)) with the following state-action value function
update:

Q(s, a)←
1

N(s, a)

n∑
i=1

111i(s, a) · zi ·W(bi)

Where N(s, a) is the total visit count for the state-action pair (s, a), n is the current iteration, 111i(s, a) is
the indicator function which equals one if (s, a) was visited in the ith iteration, zi is the reward received
in iteration i, and W(bi) is a custom objective function which takes as input the branch of node states bi

selected at iteration i.

Since this algorithm can use three different networks (the expansion policy, rollout policy and in-scope
filter) the authors name it 3N-MCTS.

After the iteration loop finishes, MCTS has generated a tree with thousands of possible pathways. In
AiZynthFinder, these pathways are sorted according to some post-processing scorer and the top-5 pathways
are extracted.

4.7.2 Cost-effective scoring of pathways with the Route Cost scorer

One of the pillars for sustainable retrosynthesis planning is finding competitive routes that are cost-effective so
they can realistically be implemented in industry (Weber et al. (2021); Sheldon (2018)).

Although our AI-metrics do not provide cost estimation, the synthesis planning tool AiZynthFinder (Gen-
heden et al. (2020b)) does include a scorer based on the cost of stock molecules and fixed cost of reactions.
This scorer has been used in Badowski et al. (2019) to generate cost-effective and chemically diverse reaction
pathways.

This Route Cost scorer defines a compound’s cost recursively from the starting compounds. The cost for
the starting compounds is retrieved through a compound stock database, which by default is ZINC (Irwin and
Shoichet (2005)). Then, the Route Cost scorer defines all non starting compounds c cost as:
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cost(c) = min
r∈pred(c)

cost(r)

Where r are reactions and pred(c) is the set of reactions that generate compound c. A reaction’s cost is
defined as:

cost(r) = ωcost(r) +
∑

c∈pred(r)

cost(c)
yield(r, c)

Where ωcost(r) is the operational cost of carrying out reaction r, pred(r) are the reactants of r, and yield(r, c)
is the product yield of reaction r with respect to the reactant c. The less the yield, the more amount of reactant
is necessary to synthesize the product, so the higher is the cost. Note how the Route Cost scorer inherently
penalizes pathways with high depth due to the fixed costs and inverse yield scaling.

Since AiZynthFinder does not predict fixed costs of reactions nor product yields, the Route Cost scorer
sets a constant value for them for all reactions. In particular, by default it sets ωcost(r) = 1 and yield(r, c) = 0.8
for all r and c. We keep these defaults in our analysis.

4.7.3 Pathway sustainability scoring

We have defined our metrics in the context of individual reactions (see Section 4.5).
To generalize to pathway sustainability scoring we simply define the score for some pathway P in terms of

some metric m(r), which takes as input a reaction r, as the mean over the reactions:

S P,m =
1
|P|

∑
r∈P

m(r) ∈ [0, 1]

Where |P| is the number of reactions in the pathway.
As explained in Section 4.7.1, Monte-Carlo tree search (MCTS) generates thousands of nodes, each corre-

sponding to a valid pathway, and then AiZynthFinder selects the top-5 pathways according to some objective
score during post-processing (see Figure 24).

We want to introduce both cost-effectiveness and our metrics into this objective score, thus we use the
Route Cost score defined in the previous section in combination with our metrics.

When selecting our top-5 pathways from MCTS nodes, the objective score should take into account that
sustainable reactions can offset their cost individually. Thus, in our objective score we use the sum of our
metrics over the reactions instead of the mean, which is equivalent to:

∑
r∈P m(r) = |P| · S P,m. Then, the

objective score is the weighted sum of our scores S P,m and the Route Cost score (defined in the previous
section):

objective score(P) = wenzyme · |P| · S P,enzyme + wsolvent · |P| · S P,solvent + wAE · |P| · S P,AE − wRC · RC(P) (2)

Where S P,enzyme is the score based on our enzymatic AI-metric, S P,solvent is the score for our solvent-
sustainable AI-metric, S P,AE is the score for our Atom Economy (AE) metric, and RC(P) is the Route Cost
score for pathway P. wm is the weight attributed to the score with metric m and wRC is the weight for the Route
Cost scorer.

We subtract the Route Cost score since AiZynthFinder tries to maximize the objective objective score(P)
and we aim to generate more cost-effective pathways.

Since we combine all metrics into a single score for the post-processing algorithm, it is useful to interpret
the meaning of the different weights wm. First, we note that the reaction cost scorer sets by default a cost of
“1 unit” to carry out any reaction and also “1 unit” as the default cost for any source compound. Then, we
note that |P| · S P,m approximately counts the amount of sustainable reactions in the pathway P according to
the metric m. Thus, we can interpret our metrics in terms of the Route Cost’s “unit cost”. In particular, if we
set the Route Cost weight wRC = 1 and a weight of wm = 1 for our metric m, then we imply that achieving a
reaction score of 1 with that metric is equivalent to offsetting “1 unit” of costs. For example, the fixed cost of a
reaction is balanced out if we are confident that it can be made enzyme-catalyzed. Thus, if wRC = 1 our metric
weights wm are in units of cost as defined by the Route Cost scorer.

We hypothesize that increasing our metric weights wm will result in more sustainable pathways generated
by the MCTS algorithm, but their Route Cost will also increase.
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Figure 24: Diagram of the pathway generation process for a target compound from the WHO Essential Medicines
List (EML) (WHO Expert Committee (1977)). The MCTS algorithm generates a tree with thousands of nodes, from which
the top-5 pathways are extracted during post-processing using some objective score. Our objective score is a weighted sum
of the different sustainability metrics

4.7.4 Assessing metric influence on pathway generation

We are now ready to use our metrics to influence pathway generation.
To quantify the performance of our metrics, we generate pathways using AiZynthFinder (Genheden et al.

(2020b)) on target compounds extracted from the WHO Model List of Essential Medicines (EML) from 1977.
127 targets from this list were extracted and used in previous work, where the authors devised an algorithm to
minimize the set of starting materials required to synthesize all 127 compounds (Gao et al. (2020a)). We will
use the same 127 targets for our study.

We generate pathways using the default expansion policy model from AiZynthFinder (explained in Sec-
tion 4.7.1). In particular, the model is a template-based model trained on the USPTO reaction dataset (Gen-
heden (2022)), i.e. it predicts the reactants from a target product by combining a deep learning model and
known chemical reaction transformations. The rollout policy model is the same as the expansion policy model,
and we do not specify any in-scope filter to prevent a possibly biased generation of non-sustainable reactions.

For each target molecule, we run Monte-Carlo tree search (MCTS) with a limit of either 200 iterations or
400 seconds and we set the maximum depth per pathway to 10 reactions. This maximum pathway depth was
also used in Gao et al. (2020a). We increased these parameters from AiZynthFinder’s default 100 iterations,
100 seconds and maximum depth of six to allow the MCTS algorithm to retrieve higher quality pathways. This
is because with more iterations and depth the MCTS algorithm covers a larger subset of the chemical reaction
space and there are higher chances of finding the optimal pathway for each target.

The default stock database in AiZynthFinder is ZINC (Irwin and Shoichet (2005); Genheden et al. (2020a)),
where it searches for starting compound’s availability on the market and their price. However, when using this
limited database we noticed that it is very difficult for MCTS to find pathways where most starting compounds
are in stock, even if we increase the number of iterations to 1’000 and the time limit to 20 minutes. Therefore,
we instead follow Gao et al. (2018) and define as our starting compounds all those with less than 10 carbon
atoms, three nitrogen atoms, and five oxygen atoms.

Regarding the cost of the starting compounds, the Route Cost scorer (explained in Section 4.7.2) will set
the cost for compounds not found in the stock database to 10 units instead of the default one unit. Since MCTS
commonly generates pathways where some starting compounds are not in stock, this results in some routes
with very large Route Cost. This large Route Cost almost completely overshadows our metrics. We change this
default “not-found” cost to two units, so a starting compound not in stock has twice the cost than the default.
This lowers the routes’ costs and allows our metrics to have a bigger impact in the search.

However, pathways with starting compounds not in stock are undesirable, since it may not be possible or
economically viable to utilize these compounds as starting materials in a real-world setting. We take this into
account and for each target compound we choose the pathway with the lowest number of starting compounds
not in stock out of the top-5 pathways selected in post-processing.

To assess the impact of each metric in the MCTS pathway generation we perform an ablation study where
we isolate the effect of each of our metrics by setting the weights of the other metrics to zero. In particular,
we look at how the metric score changes for each pathway of the 127 WHO EML targets by calculating the
difference between the metric scores achieved using some weights versus the metric score achieved for some
baseline weights. In our case, the baseline weights are those where we only optimize for cost: zero-weight for
all of our metrics, and a weight of one for the Route Cost scorer. Table 14 shows the baseline average pathway
metric scores for all 127 WHO EML target compounds. The baseline enzyme metric score is 11% on average,

39



while the average solvent-sustainability score is 21%, 84% for Atom Economy (AE), and 6 cost units for the
Route Cost. Note that our definition of cost as presented in Section 4.7.2 is currency-agnostic, thus we do not
specify any particular units.

Input metric weights Baseline scores
Enzyme Solvent AE Route Cost Enzyme [%] Solvent [%] AE [%] Route cost

0 0 0 1 11 ± 12 21 ± 6 84 ± 14 6 ± 5

Table 12: Baseline metric scores. Targets are the WHO Essential Medicines List (EML) of 127 target compounds. Errors
are the standard deviations

Figure 25 shows the impact of the different metric weights in the pathway scores. Due to our definition
of the post-processing objective (Equation 2), positive weights mean that we want more sustainable pathways
while negative weights mean that we want less sustainable pathways. As it can be seen, the scores for almost all
pathways change, thus it is clear that our metrics have an impact in the retrosynthesis algorithm. However, in
most cases the sustainability scores do not significantly increase when setting positive weights for our metrics.
The enzymatic metric is the exception, as its average score increases by 7.9% if we set wenzyme = 1 and all
other weights to zero, including the Route Cost weight. The trade-off comes with the Route Cost score in this
case, which increases on average by 57 cost units.
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Figure 25: Change in pathway metric scores from the baseline for different metric weights. A negative weight on one of
our metrics means we are minimizing that score, while a negative Route Cost weight means we are maximizing it

A surprising result is that if we minimize any of our sustainability metrics while setting the Route Cost
weight to zero the Route Cost for the pathways becomes very close to the baseline (see Figure 25). In other
words, minimizing sustainability has the same effect as minimizing costs. However, we should note that in
most cases minimizing our metrics does not significantly decrease their score. The exception is again the
enzymatic metric, which decreases by 6.8% on average.

We should remark that the generated pathways are not necessarily practical due to inaccuracies in the
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AiZynthFinder and our models, the limited scope MCTS has of the reaction space, and especially since the
viability of a pathway is not verified until brought into practice. In particular, the expansion policy model is
a multi-class predictor for reaction templates, and these templates are pre-defined transformations which may
be biased towards non-sustainable reactions.

The assessment approach presented in this section is independent of the retrosynthesis algorithm and it
could be applied to any algorithm that optimizes some quantifiable objective score.

4.7.5 Conclusion

We have demonstrated Computer-Aided Synthesis Planning (CASP) as a use-case for our metrics, and defined
an assessment approach to quantify the impact of additional metrics in the retrosynthesis algorithm.

Moreover, with the results of the previous section we have seen a trade-off between enzyme-sustainability
and Route Cost.

We have also discovered that minimizing sustainability in AiZynthFinder’s post-processing objective also
minimizes Route Cost, although it did not negatively affect the resulting average sustainability scores signifi-
cantly.
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5 Results and Discussion
Table 13 shows the sustainability prediction results on the test set for our best models presented in this work.

For the enzymatic prediction, the BERT model trained without loss balancing outperforms the BERT model
with loss-balancing parameter β = 0.99999. However, the balanced model achives an F1 score of 0.464 in
isomerase prediction (enzyme class EC.7.x.x.x), while the non-balanced model has an F1 score of 0.000 in
isomerase prediction. Thus, our balanced model is more accurate in rare biocatalysis prediction with only a
small decrease in overall sustainability prediction: −0.008 in F1 score and −0.02% in accuracy compared to
the non-balanced model (see Table 13).

For the solvent sustainability prediction there is a discrepancy between the results in the test set and the
validation set. In the test set the XGBoost baseline with DRFP fingerprints achieves the highest F1 score with
0.618, while our balanced BERT model achieves 0.584. However, in the validation set we had seen XGBoost
with DRFP achieve an F1 of 0.615 and BERT an F1 of 0.660 (see Table 10). This may be in part because the
hyper-parameter search we performed on BERT overfit to some extent the validation set, thus the model is not
as robust as XGBoost.

Sustainability prediction
Task Model Accuracy F1
Enzymatic prediction BERT 99.95% 0.986
Enzymatic prediction BERT (balanced) 99.93% 0.978
Solvent prediction XGBoost (AP3) 72.34% 0.605
Solvent prediction XGBoost (DRFP) 73.79% 0.618
Solvent prediction BERT (balanced) 70.97% 0.584

Table 13: Summary of sustainability classification approaches and their performance on the test set. (balanced) indicates
that the train loss was balanced according to the effective number of samples (Phan and Yamamoto (2020))

As shown in Section 4.7, applying our metrics for Computer-Aided Synthesis Planning (CASP) allows
us to generate pathways which are more enzyme-sustainable. We achieved this through the Monte Carlo
tree search (MCTS) algorithm implemented in AiZynthFinder (Genheden et al. (2020b)). However, a higher
enzyme-sustainability score results in pathways which have a higher cost, so there is a trade-off between
increasing enzyme-sustainability and retrieving cost-effective pathways. Table 14 summarizes this trade-off
and shows the average scores over the pathways for the relevant input metric weights. For the complete
ablation study on the input weights, see Section 4.7.4.

Input metric weights Pathway scores
Enzyme Solvent AE Route cost Enzyme [%] Solvent [%] AE [%] Route cost

0 0 0 1 11 ± 12 21 ± 6 84 ± 14 666 ± 5
1 0 0 0 19 ± 9 22 ± 5 878787 ± 12 63 ± 31
10 0 0 1 212121 ± 14 22 ± 6 878787 ± 14 8 ± 7
0 1 0 0 12 ± 7 232323 ± 5 85 ± 13 75 ± 36
0 0 1 0 13 ± 7 20 ± 5 86 ± 12 77 ± 36

Table 14: CASP results summary. Targets are the WHO Essential Medicines List (EML) of 127 target compounds used in
the work of Gao et al. (2020a). Errors are the standard deviations over the predicted pathways

Optimizing for the solvent metric or Atom Economy (AE) individually did not significantly change their
average score over the pathways compared to row one of Table 14. However, the route cost still increased. For
the solvent metric (∼ 22% on average), this may be due to the low accuracy of BERT on solvent prediction,
which missclassifies the solvents participating in the reactions, and because the MCTS algorithm is biased
towards the generation of reactions with non-sustainable solvents. For AE, we can again point to the MCTS
algorithm, since even when setting this metric’s weight to zero we achieve a high pathway AE (∼ 85% on
average) which may be due to the retrosynthesis model used in MCTS, which generates reactants for a target
product by classifying the most likely transformation. This reaction classification approach makes the change
in atoms deterministic according to the template, which may disallow many atoms from disappearing in the
reaction, thus resulting in a high AE in most cases which is hard to improve.
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6 Conclusion
Automated tools are required to accelerate sustainable development to move toward more sustainable practices
in the chemical field (Weber et al. (2021); Weber (2022)).

In this work, we have defined novel metrics based on artificial intelligence (AI) to estimate sustainability
in reactions using uncertainty quantification (UQ) techniques and introduced them into a new package for
chemical sustainability quantification. Afterward, we demonstrated how these metrics could be integrated into
a Computer-Aided Synthesis Planning (CASP) software, AiZynthFinder, to generate more enzyme-sustainable
pathways, with a trade-off on the cost-effectiveness of the routes.

Our metrics quantify sustainability through the AI models’ confidence in their sustainability prediction
in the form of a percentage, which is closer to 100% the higher the confidence. We pre-trained BERT on
a Masked-Language Modelling (MLM) task on reaction SMILES until they achieved an accuracy of 99%,
and fine-tuned them either on reaction class classification for enzyme-sustainability prediction or multi-label
solvent classification for solvent-sustainability prediction. We achieve an accuracy of 99.95% and an F1 score
of 0.986 in enzyme prediction; and an accuracy of 70.97% and an F1 score of 0.584 in solvent-sustainability
prediction. Furthermore, we have shown that XGBoost with DRFP reaction fingerprints achieves a solvent-
sustainability accuracy of 73.79% and an F1 score of 0.618.

Another focus of our package is to provide AI interpretability tools to help the user debug the AI models
used in the metrics. We presented three main visualizations: UQ for expected likelihood estimation, token
attention, and importance attribution through Integrated Gradients. Through a misclassified example where
the model is confident in the wrong prediction, we showed that attention is misleading and should not be
used for attributing the impact of individual tokens on the predicted class. Instead, we showed that Integrated
Gradients provides a better picture, and we used it to discover an adversarial attack on our enzyme prediction
model where substituting some SMILES tokens with wildcard tokens “*” pushed the model to mispredict the
reaction as enzymatic. We then counteracted this adversarial attack by randomly substituting SMILES tokens
with “*” during training.

We also generalized our metrics to pathways by scoring them according to the average metric score over
the pathway’s reactions. Then, we defined a post-processing objective pathway score to maximize in AiZyn-
thFinder as the weighted sum of our metric scores and the negative route cost estimated with AiZynthFinder’s
Route Cost scorer. These weights allow the user to specify how much impact each sustainability aspect should
have on the prediction, and we demonstrated how to tweak the sustainability-cost trade-off during pathway gen-
eration through these weights. With this method, we increased the average enzyme sustainability from 11% to
21% while slightly increasing the average Route Cost from 6 to 8 cost units on the 127 target molecules from
the WHO Essential Medicines List (EML). These results could be improved as current retrosynthesis planning
tools are biased toward generating non-sustainable pathways due to their models and the datasets they are
trained on. A recent advance has proposed a hybrid approach combining the previously developed template-
based model from ASKCOS, which is aware of traditional non-sustainable chemical transformations, and a
novel model trained on enzymatic templates (Levin et al. (2022)). Our sustainability metric toolkit could be
introduced in this approach as a post-processing step to generate pathways that are more enzyme-sustainable
for the same Route Cost we achieved with AiZynthFinder.

We should also remark that in our CASP use-case study, we did not manually inspect the pathways to
evaluate their feasibility, including whether they use a chemically diverse set of transformations, which is an
important challenge that multi-step retrosynthesis approaches face commonly (Badowski et al. (2019)). Future
work should evaluate the impact of the AI-metrics and the viability of the generated pathways.

However, we hope this work serves as an initial step toward a more complete chemical sustainability
integration framework.

More AI-based metrics could be added to expand on the toolkit, such as E-factor prediction, catalyst
prediction, or starting compound toxicity prediction. Deep learning models such as ToxSmi could be used for
toxicity prediction (Markert et al. (2020)). Additionally, efforts should be made to change the architecture of
the models used in the metrics to make them easily interpretable through formal guarantees while keeping high
accuracy; however, this would require significant advancements in the machine learning and AI explainability
communities. Finally, we consider that other objectives could be helpful for sustainable synthesis planning,
including the direct translation of chemical reaction pathways into more sustainable ones and the optimization
of the minimum and most sustainable set of starting and waste compounds that can synthesize a target molecule
library, which at the moment is only partially solved with slow mixed-integer optimization techniques in recent
works that do not focus on sustainability (Gao et al. (2020a,b)).
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Figure A.1: Solvent distribution in Pistachio+ECREACT dataset. All reactions with class 0.0 have been removed.
NameRXN superclasses (Nextmove Software (2021a)) in which each solvent participates in, including enzyme-catalyzed
reactions. Solvents are sorted from most to least common (top to bottom). Reaction superclasses for each solvent are sorted
from most to least common (left to right). The pie chart indicates the reaction superclass distribution. Frequent sub-classes
are indicated
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Figure A.2: Solvent-sustainability metric on validation set. Here, a reaction is sustainable if one of the solvents it contains
is sustainable. The fraction of reactions with a sustainable score > 0.6, > 0.7 and > 0.8 are indicated. Dense regions are
marked through kernel density estimation (KDE)

B Random choice algorithm
Given that we have a method choice(N, k) to draw a set of k items from a universe of size N with replacement,
we can devise an algorithm to draw without replacement:

Algorithm B.1 An algorithm to efficiently draw without replacement. k > 0 items are taken without replace-
ment from a universe of size N. choice(N, k) samples k items with replacement with a space complexity of
O(k log N):

Require: N ≥ (2 +
√

2) · k
1: X ← {choice(N, 1)}
2: while |X| , k do
3: s← choice(N, 1)
4: if s < X then
5: X ← X ∪ {s}
6: end if
7: end while
8: return X

Note that lines 4 and 5 are O(1) due to the hashing nature of sets, and given that the sets’ hash table is big
enough to handle O(1) hash collisions per query.

We demonstrate that this algorithm has a space complexity of O(k log N) and a time complexity of Θ(k).
Furthermore, we prove that the algorithm is O(2k) in the number of drawn items w.p. (with probability) less
than (k − 1)/N, and that if N ≥ 100 · k then the algorithm draws 1 + 1.021 · k items w.p. less than 1%.

Proposition B.1. Algorithm B.1 has a space complexity of O(k log N).

Proof. Both X and choice(N, k) occupy O(k log N) space, since |X| is at most k and our largest number, N,
requires O(log N) bits to be stored. □

Proposition B.2. Algorithm B.1 has an expected time complexity of O(k), i.e., it has a time complexity ofΘ(k).

Proof. In order to advance in the while loop, we need to add new elements to X. Thus:

P
[
sampling unique item after i + 1 draws

]
=

(
|X|
N

)i

·

(
1 −
|X|
N

)
≤

(
k − 1

N

)i

· 1
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Using this probability bound, the expected number of items drawn is:

E[# of items drawn] ≤ 1 + E[# of draws to increment |X| = 1 by 1]
+ · · ·

+ E[# of draws to increment |X| = (k − 1) by 1]

≤ 1 + (k − 1)
∞∑

i=1

i
(

k − 1
N

)i

Since we have to draw 1 item in line 1 of the algorithm and then we have to draw (k − 1) new unique items
in the while loop.

We now note that the algorithm requires that N ≥ (2 +
√

2) · k, so:

N ≥ (2 +
√

2) · k ≥ 2 · k
k − 1

N
≤ 2−1

↓

E[# of items drawn] ≤ 1 + (k − 1)
∞∑

i=1

i · 2−i

= 1 + (k − 1) · 2
= O(k)

□

However, this is not all. We have used the fact that N ≥ 2k in our proof, but now let’s generalize to N ≥ ak
with a > 1. Note that a = 1 would include the possibility that N = k, in which we just sample all items in the
universe of size N, and this is not interesting for our purposes. Also, a < 1 includes cases where N < k, which
is impossible and our algorithm would not halt.

Lemma B.1. If N ≥ ak for a > 1, the expected number of items drawn is less than 1 + (k − 1) · a/(a − 1)2.

Proof. N ≥ ak implies that,

k − 1
N
≤ a−1

↓

E[# of items drawn] ≤ 1 + (k − 1)
∞∑

i=1

i · a−i

= 1 + (k − 1)
a

(a − 1)2

Since,
∞∑

i=1

i · a−i =
a

(a − 1)2 ∀a, |a| > 1

□

With this lemma we can prove the following proposition.

Proposition B.3. Algorithm B.1 draws O(2k) items w.p. less than (k − 1)/N.

Proof. We define Y := (# of items drawn−1), which is the amount of items drawn in the while loop. We recall
Markov’s inequality:

P [Y ≥ δ · E[Y]] ≤
1
δ

δ > 0

So that, using Lemma B.1,

P
[
Y ≥ δ · (k − 1) ·

a
(a − 1)2

]
≤ P [Y ≥ δ · E[Y]] ≤

1
δ
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Now, we set δ = N/(k − 1), and consider the maximum value of a, a∗ = N/k,

P
[
Y ≥ N ·

a∗

(a∗ − 1)2

]
≤

k − 1
N

Note that this is true since Lemma B.1 still applies when a = a∗. We now observe that,

N
a∗

(a∗ − 1)2 = k
N2

(N − k)2 = k
(
1 −

k
N

)−2

Thus finally,

P

Y ≥ k ·
(
1 −

k
N

)−2 ≤ k − 1
N

We can now apply our algorithm requirement N ≥ (2 +
√

2) · k so we get,

N ≥
(
2 +
√

2
)
· k →

(
1 −

k
N

)−2

≤

(
1 −

1

2 +
√

2

)−2

= 2

Thus, in the worst case we always draw O(1 + 2k) = O(2k) items w.p. less than (k − 1)/N. □

This is very useful. It means that if N is massive and k is minuscule in comparison, we won’t draw more
than 1 + 2k items with high probability. In fact, if N is 100 times k, then we will draw 1 + 1.021 · k items w.p.
less than 1%.

To end this exploration, note that in general if we had chosen δ = N/(k − 1)kγ for some γ > 0, then we

would have that the algorithm is O
(
1 + k1+γ

(
1 − k

N

)−2
)

w.p. less than k1−γ/N.

For example, the algorithm is O(k2) w.p. less than 1/N. This means that drawing 10 items without re-
placement from a universe of 1’000 items using this algorithm will require drawing 103 items w.p. less than
0.1%.
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